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                    Colossus and the Breaking of the Lorenz Cipher  
 
Introduction: 
The breaking of the Lorenz cipher at Bletchley Park was a remarkable 
synergy of mathematics and engineering that had a significant effect on the 
course of WWII. Several descriptive accounts of this great achievement have 
appeared in various publications, on TV and also more recently on the 
Internet. The aim of this account is to focus on some of the mathematics that 
formed the basis for this success.  
 
The Lorenz cipher machine was intended solely for the use of the German 
High Command for military communications at the highest level. The system 
was based on the use of the standard international tele-printer code, in which 
each plain-text character was converted into a group of five electrical impulses 
made up of marks (x) and spaces (�), that to-day would be represented by five 
digit binary numbers. For example the letter �S� represented by:- x � x � �, 
becomes 1 0 1 0 0 in modern notation. 
 
The Logical structure of the Lorenz Machine 
The function of the Lorenz machine was to transform each character of 
plaintext into a cipher character, in a way that made it appear that they had no 
discernable relationship with each other. The machine processed each of the 
five component �impulses� of the plain-text characters by means of two sets of 
five cipher wheels. These wheels were coupled together by a complex set of 
gears, and each had a number of adjustable tabs on its circumference, with 
some of them being be set to their �active� state. When in this state a tab had 
the effect of changing the incoming impulse (i.e. from �x� to ���, and vice versa). 
At the positions on the circumferences where the tabs were in their �non-
active� state, the incoming impulses were not changed. As the wheels moved 
each tab in turn interacted with the corresponding incoming impulse. 
The diagram gives the basic layout of the machine, and shows the number of 
adjustable tabs on each wheel. 
 

          
 
The first set of five wheels was known as the �K-wheels� and the second set 
as the �S-wheels�, (originally the Greek letters χ and ψ were used). 
The K-wheels stepped on by one position after the input of each plain-text 
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character, but the motion of the S-wheels was more complex, and sometimes 
this set did not step on, being under the control of two additional so called 
�motor� wheels (at a later stage the Germans introduced some additional 
complications to the control of the movement of the S-wheels that were 
referred to as �limitations�). The joint effect of the two sets of wheels was to 
generate for each character of plain-text, the five binary bits of a pseudo 
random  �key� character which was then combined, with the plain-text 
character by a process of �addition�, to create the corresponding cipher 
character. The action of the machine can be represented by simple algebra:-  
Let a plain-text character be represented by P, the pseudo random key 
character by C, and the cipher character by Z, then:- Z = P + C. 
 
The process of �addition� was carried out on the five pairs of binary bits using 
the following rules:- �  +  �  =  �,   �  +   x  =  x,   x  + �  =  x, and  x  +  x  =  � ,  
These correspond to the rules of addition in modulo 2 arithmetic:-  
          0  +  0 =  0,  0  +  1  =  1,   1  +  0 = 1, and  1 +  1  = 0     
 
Two examples:-  Plain-text �H� =  �  �  x  �  x     Cipher �I � =  �  x  x  �  � 
              key = �L� =   �  x  �  �  x          key �L�=   �  x  �  �  x 
                   Cipher =   �  x  x  �  �  = �I �                        �  �  x  �  x = �H� 
 
These examples illustrate the property of the addition process that was 
fundamental to the function of the Lorenz machine, that can be expressed in 
the general form:-  If  Z =  P  +  C then  Z  +  C  =  P. 
This implies that C + C = �null� (the additive identity element), which is the 
character �/ � (� � � � � ). The reader may care to verify that the addition of any 
character to itself always results in the character �/ �. 
 
                           Table of  a part of  the tele-printer code  
A  x x � � �      B  x � � x x      C  � x x x �      D  x � � x �    E  x � � � �     F  x � x x � 
G  � x � x x     H  � � x � x       I   � x x � �      J  x x � x �  K  x x x x �    L  � x � � x 
M � � x x x      N � � x x �       O  � � � x x      P  � x x � x Q  x x x � x    R  � x � x � 
S  x � x � �      T  � � � � x       U  x x x � �      V  � x x x x  W  x x � � x    X  x � x x x  
Y  x � x � x      Z x � � � x       3  � � � x �        4  � x � � �   8  x x x x x   +  x x � x x 
9  � � x � �       /  � � � � �         (3 = �carriage return�,   4 = �line feed�,    
     8 = �letter shift�,  + = �figure shift�,  9 = �space�,  / = �null�.)      
  
Note: At BP all the tele-printer control characters were suppressed and 
replaced by the symbols shown above, and then printed as normal 
characters. This was done to avoid the difficulties that would otherwise have 
arisen as a consequence of the control characters appearing at random 
positions in the intercepted cipher messages. 
 
In reality both the K and S sets of wheels generated their own five bit pseudo 
random character, and so, with an extension of the notation, the key character   
C = K + S�, so that the basic cipher equation for the machine can be 
expressed in the form:- Z = P + K + S�  (The symbol S� represents the 
combined effect of the S-wheels and their stepping motion. The distinction 
between S and S� will be made clearer later). 
 The operating principle of the Lorenz system can now be expressed in 
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another way using the equation Z = P + K + S�.  After adding the composite 
key character K + S� to both sides (modulo 2), the equation is transformed to 
the alternative form:-  Z + K + S� = P . At the transmitting station the sequence 
of plain-text characters were converted into cipher characters  by the 
machine, according to the first equation given above, and at the receiving 
station each cipher character was converted back into plain-text by adding to 
it the same composite key character that had been used during the process of 
encipherment as shown by the alternative form of the equation. In order to 
bring this about, it was essential that all twelve wheels in both of the Lorenz 
machines involved had been adjusted to the same set of starting positions. 
 
At BP the secrets of the design of the Lorenz machine were deduced in a 
most remarkable way by a combination of skilful cryptology and some brilliant 
mathematics. Subsequently a simulator of the Lorenz machine (known as 
�Tunny�) was constructed. This had the same logical properties as the German 
machine, although its physical form was completely different.  However before 
Tunny could be used to decipher an intercepted Lorenz message, the correct 
wheel starting positions (settings) used for the message had to be 
determined.    
 
Finding the wheel settings: 
A major difficulty in finding the correct wheel settings can be illustrated by 
considering how the task might to be carried out by a process of �trial and 
error�. From the diagram of the machine it can be seen that the number of 
possible wheel settings is:-  
            41x31x29x26x23x43x47x51x53x59x61x37  (= 1.6 x 1019 )   
If it were possible to test all of them at a rate say of 1000 per second, then the 
total time taken would be about 500 million years! 
A more realistic approach to the problem was to break the task down into a 
number of less demanding procedures by reducing the number of wheel 
settings that had to be considered at the same time. 
 
A significant discovery:      
From an examination of the few deciphered messages that had been obtained 
over a period of time by hand methods, it was discovered that the plain-text 
often contained more pairs of repeated characters than would be expected to 
occur by chance. One reason for this was that the German operators often 
repeated the control characters, to make sure that they were not lost during 
transmission, as such a loss would cause a sequence of errors in the 
following part of the message. For example it is quite likely that the following 
(dummy) message:- LUFTWAFFE  FLTGR (ROEM XVI) would have been 
transmitted as:-  88LUFTWAFFE9FLTGR9++K88ROEM9XVI++L88        
 
The likely presence of pairs of repeated characters in the messages was used 
as a basis for finding some of the wheel settings, but first it was necessary to 
devise a simple procedure that made it possible to detect these repeats 
automatically by means of a machine. 
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The “Delta” process: 
Consider part of the message given above, together with the same part 
printed again under it, but with the letters displaced one to the right:- 
  9 F L T G R 9 + + K 8 8 R O E M 9 X V I + + L 8 8 
     9 F L T G R 9 + + K 8 8 R O E M  9 XV I + + L 8 8 
The vertical pairs of characters can be combined or �added� using the rules 
described earlier, as illustrated by the following examples:- 
  F  =  x  �  x  x  �             +  =   x  x  �  x  x 
  9  =  �   �  x  �  �     +  =   x  x  �  x  x 
          x  �   �  x  �  (= D)                          �  �   �  �  �   (= / ) 
 
If the original sequence of message characters is represented by the symbol 
P, then the result of the �summation� formed was called �delta P’ and written 
as ∆P. 
 It follows that if P =  9 F L T G R 9 + + K 8 8 R O E M 9 X V I + + L 8 8         
                then  ∆P =   D 8 4 R T C 8 / H T / Y L B X O B A O X / D F /  
 
Note that for every repeated character in the plain-text sequence P, there is a 
�/� character in the corresponding sequence ∆P. The character �/� is 
represented in the tele-printer code by �� � � � ��, which means that every 
repeated character in the plain-text sequence P will lead to a dot in each of 
the five irregular sequences of dots and crosses formed by the characters in 
∆P. The discovery of this characteristic of ∆P was of great importance. 
Subsequent developments were based mainly on the �delta� characters ∆Z, 
∆P, etc. and not on the original characters Z,  P etc. 
 
Some important equations: 
The basic cipher equation is:-  Z =  P + K + S�.  By adding K to both sides 
(modulo 2) this becomes:-  Z + K =  P + S�. It will be useful to introduce the 
additional symbolic term  D =  Z + K   so that  D = P + S�    
The following corresponding  �delta� equations are also true:-    
         i.e.  ∆D  =  ∆Z + ∆K and   ∆D  =   ∆P + ∆S� 
 
So far all the symbols used (Z, P, D K etc), have represented complete 
characters, but as the aim was to reduce as far as possible the number of 
wheels that have to be considered simultaneously, it was necessary to work 
instead with the component binary bits from which the complete cipher 
characters were composed (the sequences of these components formed the 
five  �bit-streams�). 
 
Bit-stream equations:  
Sets of equations identical in form to those for complete characters (with the 
addition of appropriate suffixes), can be used to describe the sequences of 
individual binary bits, so that for the 1st bit-stream:- 
 Z1  = P1 + K1  + S�1 and for the 2nd bit-stream Z2  = P2  + K2  + S�2  and so on 
for the other three. These   lead to  the corresponding  �delta�  relationships:-  
       ∆D1 =  ∆Z1  +  ∆K1  ----- (i)    and ∆D1  =  ∆P1  +  ∆S�1 -----(ii) 
       ∆D2  = ∆Z2  +  ∆K2  ------(iii)   and ∆D2  =  ∆P2  +  ∆S�2 -----(iv)   etc.     
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These equations ultimately provided methods for finding the settings of all the 
K-wheels that were based upon an analysis of probabilities. It was considered 
logical to begin with the K wheels, and if a method involving only one wheel 
could be found this would have been a great advantage since, for example if 
the K1 wheel was selected, then there would have been only 41 different 
settings to test.  
 
The following is an investigation (using probability theory) on the possibility of 
finding the setting of the K1 wheel on its own.  Let Pr[∆P1 = � ] = p,  (from  the 
presence of repeats in  the plain-text it was expected that p > ½).  
Let Pr[the S wheels step on] = a and  Pr[∆S1 = x ]  = b. The conditions 
required for the event [∆S�1 = x] to occur are that the two events  [∆S1 = x ] and 
[the S wheels step on] must both occur, for if the S wheels did not step on 
then the event [∆S�1 = x ] could not happen.   Hence Pr[∆S�1 = x ]  =  a.b 
 
Equation (ii) above states that ∆D1  = ∆P1  +  ∆S�1 , and it follows that  
Pr[∆D

1
 = �  ] = Pr[∆P

1
 = �  ].Pr[∆S'

1
 = �  ] + Pr[∆P

1
 = x  ].Pr[∆S'

1
 = x  ] 

   (A consequence of the facts that:  � + � = � and also that: x + x = �)  
This leads to Pr[∆D

1
 = � ] = p(1 � a.b)+(1 - p)a.b  (after the substitutions) 

            = p + a.b(1 - 2p).  
 Let this expression = u. If u > ½, then this would imply that at the correct 
setting the event [∆D

1
 =  � ] is not random, and that the setting of K1 might be 

found by counting the dots in the long sequence of ∆D
1
 bits obtained from the 

whole cipher message. It would be necessary to repeat this counting process 
for all of the 41 possible starting positions of the K1 wheel, the correct setting 
giving a dot count that was greater than any of the others. (The counts made 
at all the other settings would be associated with the random probability value 
½.). A practical dot counting process could be based on equation (i) above, 
using the known values of ∆Z1 + ∆K1      
 
Unfortunately the Germans had imposed the rule a.b=½ on the wheel patterns 
they used, and introducing this value, the expression u = p + a.b(1 -2p) = ½.   
Hence the sequence of ∆D binary bits derived from one bit-stream was 
virtually random no matter what the value of �p� happened to be, and so it was 
found not possible to find the setting for a single wheel on its own.  
 
Another investigation on the feasibility of finding simultaneously the correct 
settings of the pair of wheels K1 and K2, gave a more promising result, 
although the number of possible pairs of settings for these two wheels which 
then had to be tested was much greater:- (41 x 31) = 1271.  
A probability analysis of this two wheel situation is given below:-   
Consider the 1st and 2nd bit-streams:- 
 let Pr[∆S

1
 = x ] = b

1    and Pr[∆S
2
 = x ] = b

2 .The rule a.b = ½ that the 
Germans had imposed now worked against them. Since the value of �a� is 
fixed, it follows that b

1
 = b

2
. Replacing both by the single symbol �b�:- 

 Pr[∆S
1
 +  ∆S

2
 = � ] = Pr[∆S

1
= � ].Pr[∆S

2 = � ] + Pr[∆S
1
= x ].Pr[∆S

2
 = x ]    .  

                             = (1 - b)(1 - b) + b.b  = (1 - b)2  +  b2 
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Next consider the event [∆S'
1
+ ∆S'

2 = � ], for this to happen then either the S 
wheels do not step on (probability = 1 - a), or they do step and ∆S

1
+ ∆S

2
 = � 

Hence Pr[∆S'
1
+ ∆S'

2 = � ] = (1 - a) + a{(1 - b)
2 
 +  b2} = 1 - 2ab + 2ab

2 

               = b (as a.b = ½) 
From the known structure of the Lorenz machine and the probable patterns of 
the tabs set up on the wheels, BP assumed that 0.703 to be a realistic 
estimate for the value of Pr[the S wheels step on],  (i.e. a = 0.70).  
           Since ab =½ it follows that b = 1/(2a) = 0.71.  
 So Pr[∆S�

1
+ ∆S�

2
 = � ] = 0.71  (= 0.7 approx.) 

Previously messages had indicated that Pr[∆P
1
+ ∆P

2 = � ] = 0.6 (approx.) 
Adding equations (ii) and (iv) gives:-  ∆D1 + ∆D2   =  (∆P1 + ∆P2) + (∆S�1 + ∆S�2)  
hence Pr[∆D1+∆D2 =� ] = Pr[(∆P1 + ∆P2) + (∆S�1+ ∆S�2) = � ].  
This expression can be expanded to give:- Pr[∆D1 + ∆D2 = � ] =  
Pr[(∆P1+∆P2)= � ].Pr[(∆S�1+∆S�2) = � ] + Pr[(∆P1+∆P2) = x ].Pr[(∆S�1+∆S�2) = x ]    
  
Substituting the numerical approximations given earlier:- 
 Pr[∆D

1
 + ∆D

2
 = � ] = 0.6 x 0.7 + (1 - 0.6)(1 - 0.7) 

    = 0.42 + 0.12 = 0.54 
This result showed that the sum of the two delta bit-streams was not random. 
 
Equations (i) and (iii) given previously lead to:-    
                            ∆D1 + ∆D2  = (∆Z1 + ∆K1) + (∆Z2 + ∆K2) 
and this  provided a practical way for making the �dot counts� on Colossus.   
 
The important result:- Pr[∆D

1
 + ∆D

2
 = � ] = 0.54, shows that a dot count made 

with the K
1
 and K

2
  wheels at their correct settings was expected to give a 

higher score than that obtained for any of the pairs of incorrect starting 
positions, where the same event would have a  numerical probability = 0.5.   
The difference however is quite small, and to establish a clear distinction 
between the correct pair of wheel settings and all the remaining 1270 wrong 
pairs, the dot counts had to be derived from a large number of cipher 
characters.   

                         
  

 
A Statistical analysis: 
Assume that the number of dots in the counts made for each wrong pair of 
settings conformed to a Binomial probability distribution (p = ½) 
If a cipher message contains N characters, then the expected score when the 
K1 & K2 wheels are at their correct settings = 0.54N.  For any other incorrect 
settings the expected random score = 0.50N, and standard deviation = √N /2. 
The deviation from the mean = 0.04N, and in order to be significant this 
should not be less than some chosen multiple of the standard deviation. A 
value of 4 was adopted at BP for this multiple. Hence 0.04N > 4.√N /2. After 
squaring both sides this gives:-  (0.04)2 N > 4.  
 Hence N >2500.  This gives the minimum length of code required to give 
good prospects of discrimination.    
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The practical procedure: 
The dot counts (scores) were carried out on the Colossus computer using the 
algorithm given earlier:- (∆Z1 + ∆K1) + (∆Z2 + ∆K2). The machine read optically 
the required cipher bit-streams from a five hole punched paper tape, and 
combined them with the wheel patterns of the two K-wheels in the way 
required by the algorithm, finally printing out the score. This procedure was 
repeated for every possible pair of wheel settings. The tape was formed into a 
continuous loop so that after one  �dot count� had been completed for one pair 
of wheel settings, the count for the next pair could begin. The amount of �bit 
processing� required was considerable. For a cipher message of say 3000 
characters, the above algorithm would have to be used 41x31x3000 times  
(= 3,813,000). In order to carry out this huge task in a realistic time, the 
machine had to be very fast. By reading the cipher characters at the 
impressive speed of 5000 per second, Colossus would have completed the 
procedure in about 13 minutes, indicative of a very remarkable engineering 
achievement.   
 
Finding the settings of the remaining wheels: 
A detailed examination of the characteristics of the German plaintext provided 
the basis for other procedures that could be used to find the settings of all the 
other Lorenz wheels with Colossus. However it was the normal practice to 
restrict this work to the five K-wheels. After the settings of the K-wheels had 
been found by means of the machine, the settings of the S�wheels and the 
�motor� wheels were then be recovered by hand methods. 
 
There were good reasons for adopting this practice as the limited number of 
machines available had other important and more lengthy tasks to perform 
that could not be done by hand, as in addition to changing the wheel settings 
for each message the Germans also from time to time also changed the tab 
settings on the wheels. The considerable task of determining the tab settings 
on each wheel was known as �wheel breaking�. This was a very remarkable 
procedure that in part resembled an iterative process of the type frequently 
employed to find the numerical solutions of equations. 
 
In July 1944 on at least one of the most important Lorenz communication links 
(�Jellyfish�) the wheel patterns began to be changed every day, and this 
presented the three Colossus machines that had by then been installed at BP 
with a mammoth task (by April 1945 ten of these machines were in operation). 
 
The breaking of the Lorenz cipher was of the greatest significance during the 
planning of the D-Day operations. (For information about this readers should 
refer to the �History� section on this website to see the many references to 
�Fish traffic�.) After the war two of the leading mathematicians who had worked 
at BP, Prof �Max� Newman and Dr Alan Turing, became involved with the 
development of some of the first general-purpose digital computers. This work 
would at least in part have been motivated by their knowledge of the Colossus 
machines. 
 

 Frank Carter 


