
How we Cracked the Code Book Ciphers

Fredrik Almgren∗ Gunnar Andersson∗ Torbjörn Granlund∗
Lars Ivansson∗ Sta�an Ulfberg∗

October 11, 2000

1 Introduction

In 1999, Simon Singh published The Code Book. The book invites its readers
to take part in a competition known as the Cipher Challenge. This competition
has attracted a large and international audience. A mailing list has for instance
been set up as a forum for discussions on the competition.

This document gives a description of how we proceeded to solve the problems
posed in The Cipher Challenge. The document gives both a popular description
and overview information, as well as more in-depth descriptions of the hunts for
solutions for the speci�c stages. We have tried to organize the document in
such a way that it can be read by anyone. Some chapters do assume computer
or cryptographic knowledge. When this is the case, the technical description of
how each stage was solved is usually in a separate section. The reader who so
wishes can skip these sections and still be able to understand the rest of the
document.

We warn any reader who still wants to complete the challenge that this document
is a major spoiler for all stages. So for a reader who does not want to see any
spoilers, it is not a good idea to read this report.

1.1 Authors

When the document uses the term "we" it refers to the following group of people
who have been working together:
∗solvers@codebook.org

1

• Fredrik Almgren

• Gunnar Andersson

• Torbjörn Granlund

• Lars Ivansson

• Sta�an Ulfberg

When we entered the challenge, Sta�an, Lars and Gunnar were all working on
their PhD degrees at the Royal Institute of Technology in Stockholm, Sweden.
Sta�an and Gunnar have now recently completed their degrees, and Lars will
defend his thesis in November.

Torbjörn is the owner of SWOX, a company that develops Open Source software
solutions, specializing in the GNU compiler tool chain and high-performance
mathematical software.

Fredrik works for Across Wireless, a Swedish company working with mobile
Internet solutions.

1.2 Acknowledgments

As always when �nally completing something on which work has been ongoing
for a long time, one realizes that when time comes to thank everyone that has
helped out, much has already been forgotten. We do however have a number of
people and institutions to which we would like to express our thanks for assisting
us with both computing resources and knowledge.

We are deeply grateful to Johan Håstad of the Royal Institute of Technology
for a continuous �ow of good advice and encouragement. Many were the times
when we asked him to explain the inner workings of the Number Field Sieve.

We would also like to thank Samuel Lundqvist and Christopher Hermansson-
Muth, who were keeping our hopes up in the chase for the solution to Stage 5,
and also took active part in the solution of Stages 3 and 7. We also thank Mikael
Goldmann, who always kindly o�ered his advice.

We thank the head of the Department of Numerical Analysis and Computer
Science at the Royal Institute of Technology, for letting us use a large number
of workstations for the sieving step of Stage 10. Our thanks also go to the
system administrators; they endured a lot of problems arising from the heavy
IO-requirements of our programs.

Compaq provided access to one of their benchmarking computers with four
667 MHz Alphas and 8 GB of primary memory. This was where we made 90%

2

of the computations necessary for solving a huge equation system in the �nal
stages of the decryption of Stage 10. We believe that they thus can claim to
have provided the hardware for a record factorization without super-computer
use.

UMS Medicis 658, Palaiseau, France, provided generous access to their Compaq
DS20 dual processor 500 MHz Alpha with 4 GB of primary memory where we
performed most of the �ltering and veri�ed the parallelization of the Gauss
elimination.

We would like to thank the National Supercomputer Centre, Linköping, Sweden,
for access to computing resources that made it possible for us to perform the �rst
steps of �ltering of the relations in Stage 10, the Swedish Institute of Computer
Science, for access to their computers for sieving, and the High Performance
Computing Center North, Umeå, Sweden, for sieving and initial execution of a
square-root �nding program for Stage 10.

We would like to thank Across Wireless and the employees there for using our
screen saver for cracking Stage 9. A special thanks goes to Per Höckerman, who
slept in late one morning to arrive at 07:00, less than an hour after his computer
had reported the correct solution to the server.

1.3 The Order of the Solutions

Like many others working on The Cipher Challenge, we did not solve the stages
in the order they are presented in The Code Book. Below follows a list of the
stages in the order we solved them.

Stage 1 September 23, 1999
Stage 2 September 24, 1999
Stage 4 September 26, 1999
Stage 3 October 4, 1999
Stage 7 October 10, 1999
Stage 6 October 12, 1999
Stage 8 October 13, 1999
Stage 9 November 12, 1999
Stage 5 May 15, 2000
Stage 10 October 5, 2000

Notable is that after solving Stage 9, it took us almost six months before we
managed to break the elusive Stage 5. If one considers that we actually had all
the information that Stage 5 could require when we had solved Stages 1�4, it
actually took us more than seven months to conquer it.

3

A more detailed description of Stage 5 follows further down, but the lack of
success with solving Stage 5 was very annoying for us.

1.4 Entering into the Contest

The Cipher Challenge is a part of The Code Book, but the �rst copy of the book
was bought without the slightest knowledge of the existence of a competition.
As it happened, Fredrik was in London on September 11�18, 1999. During a
rainy week in London, Fredrik walked along the bookstore windows that fronted
the new book by Simon Singh, The Code Book. Having already read Fermat's
Last Theorem by the same author, Fredrik decided to buy this new book as
well.

Fredrik went back to Sweden and started reading the book. About half-way
through the book, Fredrik �ipped through the pages of the book and found a
section called The Cipher Challenge. The �rst cipher looked interesting enough,
and he solved it in about twenty minutes. The second was saved for later, not
because it seemed di�cult, but because the solution was not obvious to him
using pen and paper.

On Saturday September 25, Fredrik brought the book to the local juggling
practice and afterwards showed it to Sta�an. Fredrik knew that Sta�an was
usually willing to accept a challenge. This time was no exception, and Sta�an
promptly wanted a book of his own and went o� to �nd an open book store.

As soon as Sta�an had bought his own copy, a Swedish translation, they set o�
for Sta�an's work to make copies of the ciphers. The intention was to OCR all
the stages so that we had them in electronic form.

Fredrik was going to a birthday party the same evening and had to leave Sta�an
there. As Fredrik was leaving the party after midnight, he called Sta�an who
announced that he had solved Stage 4.

He had also completed the OCR work and we now had all the stages in electronic
format. Later experiences would show that this process had not been error free,
as some parts of the ciphertexts later turned out to be incorrect. These errors
never threatened the correct decryption, though.

We now felt that we were ready to make a serious attack on the ciphers.

1.5 Forming a Team

Having cracked Stages 1, 2 and 4 and converted the other ciphertexts into
computer �les, we felt pretty good about the whole thing.

4

After the weekend, Sta�an showed the book and The Cipher Challenge to his
colleagues Gunnar and Lars, and they promptly got books of their own and
joined the team. This was actually a great success since it resulted in an order
to Amazon for a dozen more copies of the book, since everyone in the university
department and some juggling friends wanted books of their own.

Now we were a large and unde�ned group of people that had just become Cipher
Challenge Cracker wannabies. We did not consider this a problem, but instead
invited anyone showing interest to work with the group. We felt that time would
tell who was in the group and who was not. Thus, while other people in the
world much later were discussing the possible formation of teams, we were a
team from day one.

As time went by and the solution to Stage 9 had been revealed, leaving us with
only Stages 5 and 10 to solve, the group was reduced as some of the original
members lost interest. At this stage we also started to operate in a more silent
way as we realized that we had quite a large task to complete for the two missing
stages.

1.6 Early Success

When the initial stages were solved rather quickly and Stages 7, 6 and 8 shortly
afterwards were solved during a hectic week, we proceeded to Stage 9. Writing
the computer programs for this stage and running them took only about a
month. Shortly before we cracked Stage 9, the American Jim Gillogly announced
completing Stage 9, so we were not to the �rst to get this far. Nevertheless, we
felt that we were probably among the �rst ones to solve this stage.

We were now only missing Stages 5 and 10, and started working on them in
parallel, hoping to �nd the solution to Stage 5 some time before we managed
to solve Stage 10. At this time, we felt that being the �rst ones to crack all ten
stages was a realistic goal to strive for.

1.7 E-Groups Mailing List and Siteswaps

Through the Usenet news group sci.crypt, we became aware that there was
a mailing list about the challenge. We quickly joined in order to keep track of
the progress of the others, and to take part in the discussions.

In November, Jim Gillogly mailed and said that there was an update on the
o�cial website, which announced his success with Stage 9. Fredrik then replied
to him and said that we too had solved Stage 9. However, within the group we
had agreed on that we would not announce this fact publicly to the mailing list.

5

Jim Gillogly kept silent about this, and we managed to stay in what Jim later
referred to as �stealth mode� throughout the contest. Some people on the list
might have called this �lurking�, but we prefer Jim's term. We actually had
decided not to openly discuss our progress.

The main reason for not disclosing anything about our progress to the list was
that we at a certain point had decided that we were in the contest in order to
win it. Once we had decided that, we actually felt that it was a better strategy
not to advise the world of how far we had proceeded: Knowledge about how
many people have cracked a certain stage can give an indication of how hard it
is.

The number of subscribers to the mailing list was steadily growing and the
discussion was starting to focus around the stage that was really holding us
back, Stage 5. A lot of texts were proposed on the mailing list, but at this point
we had tried a large number of texts, and it felt as if we had tried almost all
texts proposed, and many others.

At this point, Sta�an and Fredrik created Stenils20000 and made him send a
joke mail to the list suggesting siteswaps as possible �ltering for the Stage 5
codetext. Siteswap is a juggling pattern notation and since three of us juggle,
several of the numbers brought up associations of juggling to mind. The only
one who commented on the mail was in fact Gunnar, the third juggler in the
group. The probable conclusion is that our group might have been the only
one with active jugglers taking part, somewhat strange since juggling is popular
among programmers and the like.

It is interesting that juggling connects closely to mathematics at times, show-
ing connections to graph theory etc. For the reader interested in more about
siteswaps, these two URLs can be a good place to start.

http://www.juggling.org/help/siteswap/ssintro/
http://www.juggling.org/help/siteswap/faq.html

When some groups for attacking Stage 10 started to form in the world, Jim was
very much the gentleman and o�ered to forward the programs that the Dutch
mathematician Arjen Lenstra had sent. Since it would have been an outright
lie to say that we were no longer in the competition, and it would have been
contrary to our agreed strategy to say that we did not need these programs,
Fredrik asked Jim to forward them.

6

1.8 Deciphering the uuencoded messages

The encrypted messages for some stages are in binary form and were therefore
given as uuencoded data in the book. This did cause us some problems as this
�le format is meant to be exchanged by computers, not humans.

In fact, Simon Singh wrongly admitted to an error in one of uuencoded texts.
In this case, it had been claimed that the second last line in the �le should only
contain a back-apostrophe, `. Two out of three messages have a `, but the third
one has a blank line as its second last line. This is rather hard to see for the
human eye when the text is printed in a book, but a computer would never miss
it.

It should be noted that these two characters are equivalent since applying bitwise
AND by 63 yields the same results for 32, the index for the space character
in ASCII, and 96, the index for the back-apostrophe `. Di�erent versions of
uuencode may produce di�erent encodings, but the decoding is still consistent.
Since a line always starts o� with its length count and length zero means that
the �le ends, both of these mean end-of-�le.

7

2 Descriptions of the Work for each Stage

Here follows a description of how we worked with each individual stage in
the competition, the hurdles we faced and the small pieces of success that we
achieved.

2.1 Stage 1

Solution found on September 23, 1999.

2.1.1 Initial Knowledge

The type of cipher was clearly stated as a substitution cipher in the book,
something which made the deciphering rather straight-forward.

2.1.2 Work Description

This was really just a bedtime pen and paper problem that took about twenty
minutes to solve.

We were at �rst a bit surprised that the cipher was so di�erent in the Swedish
version of The Code Book. Then we realized that Stage 1 was in the same
language as the rest of the book. This meant that the plaintext was in Swedish
in the Swedish version. It was later con�rmed on the mailing lists that in most
editions of the book, the �rst stage had been translated to the language in which
the book what printed in

However, it turned out to be the same plaintext as the English one but in
Swedish translation. This actually was a little bit intriguing since it clearly
meant that someone else than the author had knowledge of the ciphers. Would
this be true for other stages as well?

2.1.3 How we Found the Solution

The solution was found just shortly before going to sleep using the pillow instead
of a table. The plaintext is recognized as the book of Daniel from the Bible,
and the codeword for this stage is OTHELLO.

8

2.1.4 Description of Solution Method

This was simply solved with pen and paper.

Even if frequency analysis is honored as the ultimate way of solving this kind
of cipher, it was not needed for solving this one.

Out of naivety maybe, it was assumed that the plaintext language was English.
Since the word separations were present in the cryptotext, some initial guesses
of possible words was all that was needed.

2.2 Stage 2

Solution found on September 24, 1999.

The message is clearly labeled as being a Caesar type encryption. It is therefore
the easiest of all stages. As the are only 26 possible shifts to try, the solution
can easily be found by hand by trying them all. It can also be done with a
computer, for instance using the following Unix shell script:

multivac> l=''; while [${#l} -lt 26];
do tr $l\A-Z A-ZA-Z < stage2.txt; l=.$l; done | less

Going over the 26 candidate plaintexts, it is easy to �nd the correct plaintext:

Faber est suae quisque fortunae. - Appius Claudius Caecus
Dictum arcanum est neutron.

The codeword for this stage is thus NEUTRON.

2.3 Stage 3

Solution found on October 4, 1999.

2.3.1 Initial Knowledge

This message was labeled as being homophonic. Our interpretation of this was
that the same letter could be encoded as several di�erent letters, or maybe even
as several di�erent pairs of letters. Therefore we expected the frequencies of the
di�erent characters to be almost equal.

9

2.3.2 Work Description

Even though the message was homophonic, we did of course use frequency anal-
ysis to start with. As we had suspected, this did not give us any good clue.
It however became clear that the frequencies in the message exhibited large
variations.

The presence of the character * in the message made us feel that there was some
trick involving that character. There is also an abundance of the letter X. We
quickly developed the theory that each digram in the message coded a plaintext
character. However as this gave us nothing, we quickly expanded the possible
complexity of the coding scheme.

We now worked a while on the assumption that some cryptotext characters
encoded only one plaintext character but that some characters in the cryptotext
where magic and always started a digram.

Working along this line of reasoning, Sta�an wrote yet another interactive re-
placement program. This supported interactive replacement of either single
characters or digrams into the text. It also showed the frequencies for the most
common characters and digraphs as one worked through the message.

Using this program, we spent a number of hours trying to get the message to
yield, all to no avail. When explaining the way of reasoning to someone else,
he immediately replied that it would be better to assume that the encryption
was a little bit simpler than we thought. We were assuming the encryption to
be almost diabolical as we invented one possibility after another.

The opening to the whole decryption came when Sta�an and Fredrik looked at
the message and realized that the distribution of some characters in the messages
was very interesting. It turned out that the cryptotext characters M, G, C, Z,
N and B appear in a very interesting pattern in the message: Each one of them
is only present on a few lines and is very frequent in these lines. This made us
assume that they all encoded the same plaintext character.

2.3.3 How we Found the Solution

Using the above knowledge, we went back to the program. We �rst assumed
that the cryptotext character X coded a space and thus discarded these. We
then replaced all the characters described above with one character.

It turned out that that character had relative frequency of about 10%. The
second most frequent character amounted to about 9%.

Knowing this, we had an internal battle if we should �rst try Spanish or Italian as

10

plaintext language. Eventually, we decided to give Italian a thorough attempt.
The problem was that we knew no Italian. However, �nding some samples of
Italian on the WWW was no problem so we set out to solve it.

Using information about frequencies and common short words in Italian we used
the interactive program to replace characters. After a while, we started feeling
that we were actually seeing a real text form before our eyes.

We did not understand the text but using only the �rst two words as search
string in AltaVista quite easily yields a hit for Dante Alighieri: The �rst �ve
words produces a hit for Canto XXVI de L'Inferno. The codeword for this stage
was placed after this text; it is EQUATOR.

2.3.4 Description of Solution Method

The interactive program might have made it too easy for us to follow the wrong
track for a while when we were working on the digram-theory. However, once
we were on the right track, it made it really simple to try di�erent attempts at
character substitutions.

We also learned the important lesson that it is smarter to try the simpler solu-
tions before assuming that something is really di�cult.

Knowing this, we also realized that the fastest way into Stage 3 is probably to
attack it with pen and paper when doing the �rst frequency analysis. Since we
did all that with programs, we missed the suspicious characters for a long time.
If that had been done manually, one would quickly have seen the interesting
patterns formed by these characters.

Once again the KISS theory had been proven...

2.4 Stage 4

Solution found on September 26, 1999.

2.4.1 Initial Knowledge

It was stated already in the formulation of Stage 4 that the this was a Vigenère
cipher.

11

2.4.2 Work Description

It was very straightforward to solve this stage. Gunnar, Lars and Sta�an had
taken a course in cryptography some years ago, in which cracking a Vigenère
cipher was one of the homework assignments. Programs for solving this kind of
cipher were therefore present and could be used immediately. This stage was
thus solved in a few minutes.

2.4.3 How we Found the Solution

Below follows the output from the program vigenere.

monty>./vigenere freqs.txt stage4.txt

Keyword length 1: 0.0437
Keyword length 2: 0.0444
Keyword length 3: 0.0432
Keyword length 4: 0.0442
Keyword length 5: 0.0786
Keyword length 6: 0.0438
Keyword length 7: 0.0440
Keyword length 8: 0.0430
Keyword length 9: 0.0412
Keyword length 10: 0.0788

Give keyword length (optimal m=10): 5

1)AKCJI: KGMNWFLHGMJKSEMKWJDWKZGEEWKVWIMAHSYWHJWF
2)BLDKJ: JFLMVEKGFLIJRDLJVICVJYFDDVJUVHLZGRXVGIVE
3)CMELK: IEKLUDJFEKHIQCKIUHBUIXECCUITUGKYFQWUFHUD
4)DNFML: HDJKTCIEDJGHPBJHTGATHWDBBTHSTFJXEPVTEGTC
5)EOGNM: GCIJSBHDCIFGOAIGSFZSGVCAASGRSEIWDOUSDFSB
6)FPHON: FBHIRAGCBHEFNZHFREYRFUBZZRFQRDHVCNTRCERA
7)GQIPO: EAGHQZFBAGDEMYGEQDXQETAYYQEPQCGUBMSQBDQZ
8)HRJQP: DZFGPYEAZFCDLXFDPCWPDSZXXPDOPBFTALRPACPY
9)ISKRQ: CYEFOXDZYEBCKWECOBVOCRYWWOCNOAESZKQOZBOX

10)JTLSR: BXDENWCYXDABJVDBNAUNBQXVVNBMNZDRYJPNYANW
11)KUMTS: AWCDMVBXWCZAIUCAMZTMAPWUUMALMYCQXIOMXZMV
12)LVNUT: ZVBCLUAWVBYZHTBZLYSLZOVTTLZKLXBPWHNLWYLU
13)MWOVU: YUABKTZVUAXYGSAYKXRKYNUSSKYJKWAOVGMKVXKT
14)NXPWV: XTZAJSYUTZWXFRZXJWQJXMTRRJXIJVZNUFLJUWJS
15)OYQXW: WSYZIRXTSYVWEQYWIVPIWLSQQIWHIUYMTEKITVIR
16)PZRYX: VRXYHQWSRXUVDPXVHUOHVKRPPHVGHTXLSDJHSUHQ

12

17)QASZY: UQWXGPVRQWTUCOWUGTNGUJQOOGUFGSWKRCIGRTGP
18)RBTAZ: TPVWFOUQPVSTBNVTFSMFTIPNNFTEFRVJQBHFQSFO
19)SCUBA: SOUVENTPOURSAMUSERLESHOMMESDEQUIPAGEPREN
20)TDVCB: RNTUDMSONTQRZLTRDQKDRGNLLDRCDPTHOZFDOQDM
21)UEWDC: QMSTCLRNMSPQYKSQCPJCQFMKKCQBCOSGNYECNPCL
22)VFXED: PLRSBKQMLROPXJRPBOIBPELJJBPABNRFMXDBMOBK
23)WGYFE: OKQRAJPLKQNOWIQOANHAODKIIAOZAMQELWCALNAJ
24)XHZGF: NJPQZIOKJPMNVHPNZMGZNCJHHZNYZLPDKVBZKMZI
25)YIAHG: MIOPYHNJIOLMUGOMYLFYMBIGGYMXYKOCJUAYJLYH
26)ZJBIH: LHNOXGMIHNKLTFNLXKEXLAHFFXLWXJNBITZXIKXG

Give selected keyword index: 19

SOUVENTPOURSAMUSERLESHOMMESDEQUIPAGEPRENNENTDESALB
ATROSVASTESOISEAUXDESMERSQUISUIVENTINDOLENTSCOMPAG
NONSDEVOYAGELENAVIREGLISSANTSURLESGOUFFRESAMERSAPE
INELESONTILSDEPOSESSURLESPLANCHESQUECESROISDELAZUR
MALADROITSETHONTEUXLAISSENTPITEUSEMENTLEURSGRANDES
AILESBLANCHESCOMMEDESAVIRONSTRAINERACOTEDEUXCEVOYA
GEURAILECOMMEILESTGAUCHEETVEULELUINAGUERESIBEAUQUI
LESTCOMIQUEETLAIDLUNAGACESONBECAVECUNBRULEGUEULELA
UTREMIMEENBOITANTLINFIRMEQUIVOLAITLEPOETEESTSEMBLA
BLEAUPRINCEDESNUEESQUIHANTELATEMPETEETSERITDELARCH
ERBAUDELAIREEXILESURLESOLAUMILIEUDESHUEESLEMOTPOUR
ETAGEQUATREESTTRAJANSESAILESDEGEANTLEMPECHENTDEMAR
CHER

The program is interactive. It �rst evaluates di�erent keyword lengths. For
each length it gives a score whose meaning is described below. The higher the
score, the more likely it is that the keyword length is the true keyword length.
As we can see, length �ve is the �rst candidate with a signi�cantly higher value,
so that length is selected.

The program then computes the most probable distances between the letters in
the keyword and displays the 26 possible keywords with this letter distances. 25
of the candidates are nonsense, but number 19 both gives a meaningful keyword
and an easily recognizable plaintext in French. The plaintext is taken from the
poem �L'Albatros� by Charles Baudelaire, and as we can see the codeword for
this stage is TRAJAN.

2.4.4 Description of Solution Method

There are two major obstacles when deciphering a Vigenère cipher. The �rst is
to �nd the length of the keyword superposed on the plaintext, and the second

13

is to �nd the shift between adjacent letters in the keyword.

If the keyword length is �ve, every �fth letter in the ciphertext have been shifted
the same distance. This means that for the o�sets 0, 1, 2, 3, 4, the text obtained
by reading every �fth word will be an ordinary Caesar shift of the plaintext.
Given a string x of n characters, the index of coincidence of x, denoted Ic(x) is
de�ned as the probability that two random elements of x are identical. If the
frequencies of the 26 letters in x are denoted f0, . . . , f25, this probability can be
written

Ic(x) =

25∑
i=0

fi(fi − 1)

n(n− 1)
. (1)

For a completely random string this value will be approximately 1/26 ≈ 0.038.
However, if we let pi be the probability that a random letter in English text is
i, then for an English text x,

Ic(x) ≈
25∑
i=0

p2
i ≈ 0.065. (2)

If the di�erent letters in a text are shifted with di�erent shifts this text will look
like random text. However, if they are shifted with the same shift the index of
coincidence should be that of the plaintext. If we compute the mean of the
index of coincidence for the text obtained by reading every �fth letter for the
�ve o�sets we thus expect that the index of coincidence will be closer to 0.065
than to 0.038 if �ve is the correct keyword length. This is also what we observe
above.

The next problem is to determine the di�erence in shifts between the adjacent
letters in the text. This is done in a similar way. Let x and y be two strings
with nx and ny letters, respectively. The mutual index of coincidence of x and
y, denoted MIc(x,y), is de�ned as the probability that a random element of
x is identical to a random element of y. If fx0 , . . . , f

x
25 and fy0 , . . . , f

y
25 is the

frequencies of the 26 letters in x and y, respectively, this probability can be
written

MIc(x,y) =

25∑
i=0

fxi · f
y
i

nx · ny
. (3)

Assume once more that the keyword length is �ve. Let y1, . . . ,y5 be the �ve
substrings obtained by reading every �fth letter for the �ve di�erent o�sets. The
substrings yi are all obtained by a shift encryption of the plaintext. Assume
that K = (k1, . . . , k5) is the keyword. It is quite easy to see that in this case

MIc(yi,yj) ≈
25∑
h=0

ph−ki , ph−kj =
25∑
h=0

ph, ph+ki−kj (4)

14

where the subscripts are reduced modulo 26. If we test all possible relative shifts
of two strings of English text we will see that when the relative shift is 0, the
mutual coincidence will be approximately 0.065; and otherwise it lies between
0.030 and 0.045. This means that if we test all possible values for ki−kj for the
two substrings yi and yj , the mutual coincidence should be close to 0.065 for
the correct relative shift and between 0.030 and 0.045 in the other cases. This
will give us an linear system of equations for the �ve shifts k1, . . . , k5 which can
be solved and which will yield the relative shifts for the �ve substrings.

Now we only have 26 possible keywords and plaintexts, and a visual inspection
easily reveals the solution.

2.5 Stage 5

Solution found on May 15, 2000.

2.5.1 Initial Knowledge

This stage was haunting us for more than six months. From the very beginning
of our e�orts we were convinced that this cipher must be some kind of book
cipher. As the book cipher was described in The Code Book, this should imply
that the numbers given are indices to words in a key text, and the initial letters
in these words should give the plaintext. Other versions were proposed as well,
e.g. counting backwards, counting every kth word, etc. As the other stages were
solved we obtained more clues. The language of the plaintext had a tendency to
be correlated with the origin of the cipher. Since book ciphers were exempli�ed
with the Beale ciphers, this would imply that English should be the language
of the plaintext.

2.5.2 Work Description

This stage made us more and more desperate. Like most people, our initial
essays were made with paper and pencil. Naturally, the Declaration of Indepen-
dence attracted a lot of attention as well as other similar documents. We found
a veritable gold mine �lled with this kind of texts at the homepage of the Avalon
Project. That The Code Book itself would contain the keytext was proposed
early on. The appendices of the book therefore attracted much interest. The
presence of �A void� seemed a little out of scope, but also the other appendices
were examined carefully.

When all this failed, other ideas emerged. The numbers were between 3 and
215, which made us interested in the crossword shown in The Code Book. The

15

crossword has 15 × 15 = 225 squares; surely this cannot be a coincidence!
However, no matter how we counted the 4 times repeated index 119 always
became a �lled square, and no message emerged.

At this point we decided to stop being intelligent, and start using brute force.
Several programs were written. A �rst version of our program tested all possible
o�sets in a text. For each o�set the program extracted the �rst, last, or kth
(for all possible choices of k) letter in the magic words. We also built a similar
program which instead of counting words counted letters (including or excluding
whitespace and separators). The possible plaintexts were then written on a �le
which was scanned with the Unix command grep for probable keywords like
�stage� and �word�. What we learned from this was that given enough amount
of keytext, seemingly improbable amounts of candidate plaintexts may emerge.
Some of the messages we found scanning the King James version of the Bible
would have made Michael Drosnin jump with joy.

Our next step was to make a fully automatic version of the program. To ob-
tain a fully automatic program for this we created an evaluation function that
evaluated each potential plaintext. The evaluation function uses a large English
dictionary. Candidate plaintexts with high enough evaluations were output by
the program for visual inspection.

The two programs (the word counter and the letter counter) were then run on
various texts. The Project Gutenberg provided us with several hundred MB of
text. A small subset of the texts that were tested is:

The Bible
The book of Daniel was the plaintext in Stage 1.

The Gaelic wars
Caesar had written the plaintext of Stage 2.

La divina commedia
The plaintext in Stage 3. Several languages were tested.

Baudelaire
All we could �nd electronically was tested. This was after all the author
of the plaintext in Stage 4.

Robinson Crusoe
Written by Daniel Defoe, and the plaintext in Stage 1 ends �now let Daniel
be called, and he will show the interpretation.�

The adventures of Sherlock Holmes
Mentioned in The Code Book.

To the center of the earth
By Jules Verne. Also mentioned in The Code Book. Here we actually
found an interesting crib for an early o�set.

16

Treasure island
A 19th century book about hidden treasures, clearly an eminent choice
for the key text.

The Rosetta Stone
The number of verses is 54, i.e., the same as the number of indices in
Stage 5. Surely this cannot be a coincidence!

Not only electronic texts were examined. One group member hunted the Stock-
holm libraries for the French version of �A void�. We also had advanced plans
for scanning The Code Book, and �Fermat's last theorem�, also by Simon Singh.
Singh's PhD thesis was also searched for. After all, the two �rst solvers that we
heard of had connections to Cambridge and might therefore have had access to
this thesis.

Alternative solution methods were also discussed. We actually have to admit
that during a beer drinking session, we came up with a scam that could be
used to get the solution. The CipherChallenge email list was now buzzing with
people announcing their success with Stage 5. What if we said that we had
solved Stage 5, and volunteered to con�rm the solutions of others... Luckily, we
never needed to resort to getting the scam, since Lars announced the successful
solution some days later.

2.5.3 How we Found the Solution

During the Spring the discussions concerning Stage 5 became more and more
vivid on the Cipher Challenge mailing list. Simon Singh himself gave some hints
about the nature of the cipher. From Singh's updates a lot of people tried to
extract clues which were not there. People having solved the stage encouraged
the ignorants to forget all hints and start again with an unprejudiced mind. A
hint that was given was to consider who the constructor of the cipher was.

Early on we had thought of the book �Fermat's last theorem� by Simon Singh
as the potential keytext. We had also thought about texts by Pierre de Fermat.
During a game of the board game Othello between Lars and Gunnar, the famous
marginal note by Fermat was suggested as a potential keytext. The objection
was raised that this text surely must be too short, but to settle the question we
searched for the text on the Internet. It turned out that the text was too short
for the word counting approach, but had the right length for letter counting.
After having tried an English and a French version, we stumbled over the text
in Latin which turned out to be the original language. This text is as follows.

Cubem autem in duos cubos, aut quadratoquodratum in duos quadra-
toquadratos, et generaliter nullam in in�nitum ultra quadratum potes-

17

tatem in duos eiusdem nominis fas est dividere. Cuius rei demonstra-
tionem mirabilem sane detexi hanc marginis exiguitas non careret.

Feeding this text into the letter counting program cwizard gave the following
result.

sandman> cwizard < Fermat.latin.txt > Fermat.latin.out
Building trie...
Done

225: PLAIFAIRCIPHERESELPROXIMONIVELLAPALABRASECRETAESILLIAD
P(0)LAI(3)FAIR(4)CIPHER(6)ESEL(0)PROXIMO(7)NI(0)VELL(4)APA(3)
LABRA(5)SECRETA(7)E(0)SILL(4)IAD(0)

We observe that we had a bit of luck here. Even though the plaintext was in
Spanish there were enough English words in the text for our program to classify
it as a candidate text. If we format the text properly we get

Playfair cipher es el proximo nivel. La palabra secreta es Illiad.

The keyword for this stage is thus ILLIAD.

2.5.4 Description of Solution Method

Here we will give a more detailed description of the program cwizard used to
solve the book cipher. For a given text all possible o�sets are tested, and the
characters are counted both from the beginning and from the end of the text.
The program considers four ways to count letters in a text.

1. Count all characters as letters.

2. Count separators but not whitespace as letters.

3. Count whitespace but not separators as letters.

4. Count neither whitespace nor separators as letters.

For each text all four ways to count are tested.

Given a hypothetical plaintext we use an automatic sanity check, using an En-
glish dictionary. The dictionary is stored in a trie. A trie is a tree-like data
structure where each node represents a letter. Any path from the root down the
tree thus makes a potential word. If the word obtained by following a path from

18

the root to a node v is in the dictionary, we mark the node v as a word-ending
node. With this data structure it is possible to see if a word is present in the
dictionary in time linear in the length of the word.

The potential plaintext is evaluated using dynamic programming. A word w is
given the score |w|2, if the length of the word |w| > 2 and if w is present in
the dictionary. Otherwise the score of the word is 0. Our aim is to partition
the plaintext into disjoint words so that the sum of the score for each word is
maximized. This is easy to do with dynamic programming. Let S(i) be the
maximum score for the �rst i letters in the plaintext, and let s(i, j) be the score
for a word beginning at index i and ending at index j in the plaintext. Then

S(i) = max
1≤j≤i

{S(j) + s(j, i)}

This function can be computed e�ciently in a bottom-up fashion, and the opti-
mal score for the plaintext is given by S(n) where n is the length of the plaintext.
The plaintext was �nally output if the score S(n) was at least 3.2n.

The reason for using a quadratic scoring function was that we wanted to reward
longer words more than shorter words. Short real words tend to be present,
en masse, in nonsense text as well. With a quadratic function and the selected
threshold the number of false hits was reasonably small. The hope was that
the correct text be detected with this methodology. This was also eventually
con�rmed.

2.6 Stage 6

Solution found on October 12, 1999.

2.6.1 Initial Knowledge

When we solved this stage we had not yet solved Stage 5, and we did thus not
know what type of cipher we had to deal with. However, several properties of
the ciphertext suggested that this cipher was a Playfair cipher. For instance,

• The letter J was missing from the ciphertext.

• The frequency distribution of single letters was rather smooth, while the
bigram frequency distribution was skewed.

• The chronological order in which the ciphers tend to appear made a Play-
fair cipher seem probable.

The Playfair cipher seemed connected with Great Britain so our approach was
that the plaintext should be written in English.

19

2.6.2 Work Description

Initially we tried to solve this stage by hand. We made bigram statistics and
tried to solve the cipher by considering it as a substitution cipher with

(
25
2

)
=

300 letters. Some observations could also be made that should facilitate the
substitutions, e.g. that if XY is mapped to AB then YX is probably mapped
to BA, etc. Our English skills were however not su�cient for breaking the
cipher in this way. We also made some attempts at building the key square in
an intelligent fashion. We tried to �ll the top of the square with English text
and then pad with the remaining letters in order. This was however also made
without success. We thus decided to once again resort to brute force.

The idea we used was to make a heuristic search for the true key square. The
program we built �rst evaluated all possible choices of the �rst six letters in the
key square. Then it added one letter at a time and saved the partial keys that
got the highest scores to the next round. We also built in the possibility to �x
an initial portion of the key square and then proceed as above with the rest of
the square. The crucial part of this approach is naturally to construct a good
evaluation function.

Our evaluation function was based on bigram statistics. Using a massive amount
of English text in which all in-frame double repeats such as AA were substituted
with AXA, the frequencies of the di�erent bigrams were counted and the log-
probabilities (i.e., the natural logarithms of the probabilities of of the di�erent
bigrams) were estimated. For a given partial square we �rst extracted all the
plaintext bigrams for which both the plaintext bigram and the corresponding
ciphertext bigram were found in the part of the key that was set. The mean
of the log-probabilities for all of the pairs with log-probability above −9 were
then computed for normalization purposes. Using the partial key, parts of the
ciphertext were deciphered to plaintext. The sum of the log-probabilities of all
the bigrams in the plaintext fragments were computed, and the score of the key
was set to this value subtracted by the computed mean times the number of
bigrams found in the plaintext fragments.

2.6.3 How we Found the Solution

In a large run, we assumed that the �rst letter of the key was E, an assumption
that always can be made without loss of generality. We then tried all possible
ways to choose the second letter. Using all these possible bigrams as the preset
part of the key we used the program described above. When looking at the best
candidate keys for the 25 di�erent trials we found some that looked promising.
When deciphering the ciphertext with one of those keys we found the fragments
SAYFAIRCIRNER and YOUWILLSEXETHATITI in the plaintext. We had
thus found a key square which was partially but not entirely correct. After

20

having played around with the bigrams a little bit, we decided that the letters
NKEVI should be one row of the key square. We thus �xed these �ve letters as
the �ve �rst of the key and ran our program once more. The best key square
found was

NKEVI
RHCTO
GBALU
PDMFS
ZQWXY

which produced the plaintext:

THISSTAGEISNUMBERSIXANDITISAPLAYFAIRCIPHERSTOPTHEFOLLOW
INGSTAGEISNUMBERSEVENWITHINTHECONTEXTOFTHISCOMPETITIONA
NDITISENCRYPTEDACXCORDINGTOANADFGVXTYPECIPHERSTOPWHENYO
UATTEMPTXTOCRYPTANALYSESTAGESEVENYOUWILLSEXETHATITISMOR
ECOMPLICATEDTHANASTRAIGHTFORWARDADFGVXCIPHERSTOPUNFORTU
NATELYICANXNOTGIVEYOUANYMORECLUESSTOPNEWPARAGRAPHINTERM
SOFTHISXSTAGETHESHIBBOLETHTHATYOUSHOULDTAKENOTEOFISMOLY
BDENUMNEWPARAGRAPHYOUWILXLPROBABLYHAVENOTICEDBYNOWTHATE
ACHSTAGEISINADIFFERENTCIPHERANDISUSUALLYINANAPPROPRIATE
LANGUAGESTOPSOTHEVIGENERESTAGEWASINFRENCHANDTHISPLAYFAI
RSTAGEISINENGLISHSTOPIFTHEPATXTERNPERSISTSTHENTHENEXTST
AGEWILXLBEINGERMANSTOPBUTDOESTHEPATTERNPERSISTQUESTIONM
ARKQ

If we format the text and replace the formatting words present in the plaintext
we get the following message.

This stage is number six and it is a Playfair cipher. The following
stage is number seven within the context of this competition and
it is encrypted according to an ADFGVX type cipher. When you
attempt to cryptanalyse stage seven you will see that it is more
complicated than a straightforward ADFGVX cipher. Unfortunately
I cannot give you any more clues.

In terms of this stage the shibboleth that you should take note of is
molybdenum.

You will probably have noticed by now that each stage is in a di�er-
ent cipher and is usually in an appropriate language. So the Vigenere
stage was in French and this Playfair stage is in English. If the pat-
tern persists then the next stage will be in German. But does the
pattern persist?

21

The codeword for this stage is thus MOLYBDENUM. We also realize that
the key was not created at random. If rotate the columns of the key one step
to the left we obtain

KEVIN
HCTOR
BALUG
DMFSP
QWXYZ

A guess is that the �rst three rows emerge from �Kevin Hector Brian Clough�.
We searched for �Kevin Hector� and found that a football player with this name
was one of the front players in Derby FC during the 1970s. Brian Clough was
the coach of Derby at that time.

2.6.4 Description of Solution Method

For some reason the program used for this stage was called heavy. The program
builds the key square in a stepwise fashion. The user has the option to specify
the initial part of the key. For instance, if we know that the key starts with
the letters APE we can tell the program to only try key squares beginning with
the three letters APE. Given these preset letters of the key the program tries
all possible combinations of the next six letters in the key. The most likely
candidates of the possible keys are then stored in a heap of speci�ed size. For
each of the keys in the heap all possible choices of the next letter in the key is
evaluated, and the keys with the highest score are saved in another heap.

The crucial part of the algorithm is thus to �nd a good evaluation function.
To evaluate a partial key, heavy uses a �le containing the log-probability of all
bigrams occurring in English text, where in-frame repeats AA have been sub-
stituted with AXA. Assume that the following key square should be evaluated.

THECO
DBK##
#####
#####
#####

To eliminate the bias due to the frequencies of the key letters in English text
we �rst compute the mean m of the log-probabilities of the bigrams that may
be constructed with the letters in the partial key. For a bigram to be included
we required that both the plaintext bigram and the corresponding ciphertext
bigram should be a subset of the letters in the partial key. In the example above

22

this means that the bigram DE is included but not OK. Finally, to reduce noise,
we only included bigrams with log-probability higher than −9 when computing
the mean.

Using the partial key the program then deciphers as much as possible of the
ciphertext. The longer the partial key, the larger part of the ciphertext will be
deciphered. For all bigrams we then sum the log-probabilities of all bigrams
occurring in the text. If we let s be this sum and n the number of bigrams that
were the detected, we �nally set the score of the partial key to s− nm.

2.7 Stage 7

Solution found on October 10, 1999.

2.7.1 Initial Knowledge

We attacked Stage 7 without having cracked Stage 6, so we did not know for
certain what type of cipher it was. However, a clone of ADFGVX seemed the
most likely guess and the length of the cipher text gave a nice indication to
support this guess. The text consisted of 7048 characters, and 7048 = 8 · 881.
Since 881 is prime, we guessed that the code matrix was eight columns wide.

It was pointed out later that this was not necessarily a correct assumption to
make since the initial columns could well be of di�erent lengths. However, even
after having solved this stage, we felt that that would probably have been to
expect the cipher to be more complicated than it was, an assumption which
turned out to be true. We had already made the mistake of overestimating the
di�culties when trying to solve Stage 3. So even if we had received this warning
beforehand, we would have started out with the simpler version.

2.7.2 Work Description

Sta�an rather quickly managed to pair the columns two and two to form a new
code matrix with only four columns. We now knew these actually represented
letters in a 64 character alphabet. The problem was now reduced to �nding out
which of the possible 24 permutations that was the correct one.

Sta�an wrote an interactive program for simultaneously testing replacements
in all the 24 possible solutions, and the problem was reduced to a substitution
cipher. The problem was to know which one of the ciphertexts to focus on.
We hoped that as soon as we got a few characters in place, it would become

23

apparent which one was the correct text. However, the problem did not yield
as easily to that approach as we had �rst thought.

After thinking a couple of days, we focused on the fact that the �rst four charac-
ters would always be the same, and only the order of them would vary. By using
the classic technique of frequency analysis, we observed the �rst four characters'
relative frequency.

With this data, we looked at frequencies for di�erent languages and somehow
guessed that German seemed to be the only language that could probably satisfy
these frequencies and their connection. This also �t quite well with the fact that
the ADFGVX cipher was used by Germany during the �rst world war. Once
that guess was made, it was rather easy to deduce which of the 24 alternative
crypto-texts was the correct one.

From that on, the rest of the solution was just a simple matter of replacing
characters interactively and the whole text was open in a couple of minutes.

In this process, we realized that we recognized the plaintext and pulled out a
copy of Fermat's Last Theorem to �ll in the blanks. Close to the end of text we
found the keyword, EDISON, followed by a very interesting paragraph:

Der naechste Teil enthaelt eine von einer Enigmamaschine
verschluesselte Mitteilung. Die Abbildung zeigt die Verbindungen
innerhalb jeder Walze und der Umkehrwalze der Maschine. Es ist
dennoch zu beachten dass das Walzenlage falsch wiedergegeben ist.
Eigentlich sollen Walze 1 und Walze 2 gegeneinander ausgetauscht
werden. Die urspruengliche Walzestellung und Ringstellung und
Steckerverbindungenstellung sind unbekannt.

Thus spurred by the success in solving the seventh stage, we also jumped to
re-running Stage 8, which was attacked in parallel with this stage, armed with
the new information that was revealed to us in the plaintext of Stage 7. We
started a full run of analysis for Stage 8 with the new information, hoping to
crack that one too.

However, Stage 8 still did not yield. At this point, Stages 6�8 had been worked
on in parallel, and we hoped that the success with this stage would soon be
followed by Stages 6 and 8 yielding. This was also what happened.

2.7.3 Description of Solution Method

The method we used is based very much on the way a legitimate receiver of the
message who knows the correct key would decipher it. We assumed the cipher

24

key codeword length (which is the same as the width of the code matrix) to
be 8. Decipherment consists of the following steps.

1. Write down the cipher text in an 8× 881 matrix.

2. Permute the columns of the matrix according to the cipher key codeword.

3. Group consecutive columns two by two.

4. Apply the simple substitution that is part of the cipher key to the resulting
digraphs to obtain the plain-text.

The table for the simple substitution consists of 36 entries for a normal AD-
FGVX cipher, and of course this table has 64 entries for a CEMOPRTU cipher.
We initially guessed that the characters used in the message were 52 lower and
upper case letters, 10 digits, space, and full stop. This guess later turned out
correct.

Since simple substitution ciphers are generally easy to break, the permutation
of columns in the matrix is really the only thing we had to worry about.

After a plain text has been encrypted by a simple substitution, the distribution
of characters is still very uneven. Therefore, we knew that some permutations
(including the correct one!) of the columns would result in a distinctly uneven
distribution of digraphs. This had to hold for all 4 pairs of columns individually,
and also, the distribution of digraphs had to be approximately the same for each
column pair.

We wrote a program that graphically showed the 28 digraph distributions re-
sulting from all pairs of columns. It was an easy and fast matter to spot the
correct pairing of columns from this output.

Notice that if the initial guess for the code matrix width had been wrong, the
results at this stage would not have been any good. It could have been, however,
that the code matrix width was 2 or 4, but a re-run of the program with this
assumption excluded this possibility.

We could now rewrite the matrix as a four-column matrix of digraphs, and we
actually substituted the digraphs by the assumed input alphabet at this stage.
Since one of the 24 possible permutations of these columns had to be a simple
substitution of the plain-text, we decided that the best course of action was to
examine each one of the 24 possibilities individually.

2.8 Stage 8

Solution found on October 13, 1999.

25

2.8.1 Initial Knowledge

Finally a stage where it is obvious what crypto was used to generate the cipher-
text. In principle, we could have attacked this stage immediately, but being
placed as the 8th problem we thought that it would be too di�cult. After
some skirmishes with Stage 6 without any success, some team members turned
their attention to this problem, and it was pretty much solved in parallel with
Stages 6 and 7.

So what do we know, and what information do we need? It is clear from the
illustration in Stage 8 that the ciphertext was encrypted with a three-wheel
Enigma for which the contents of the three wheels as well as the re�ector are
known. This means that there are four classes of unknown parameters:

The direction the wheels rotate
It is not clear from the �gure in what direction the wheels rotate.

The initial wheel positions
For each of the three wheels, there are 26 initial rotations possible.

The ring settings
The �rst two wheels contain two rings. Remember that the wheels are
rotated after each encrypted character in an odometer-like fashion: The
�rst wheel is always rotated, the second wheel every 26 rotations of the
�rst wheel, and the third wheel every 26 rotations of the second wheel.
The rings determine the point of the �rst rotation of a wheel: If the ring
on the �rst wheel is reached after 10 rotations, then the second wheel is
rotated after 10, 36, 62, . . . rotations. For the �rst two wheels, there are
26 possible ring settings, but we can actually disregard some placements
on the second wheel as the ciphertext is shorter than 676 characters long.

The plugboard connections
The plugboard contains a set of pairs of letters which are exchanged for
each other: If E and Z are connected, then every in- or out-going signal
which is an E is mapped to a Z, and vice versa. According to Singh, there
were at most six pairs of exchanged letters.

This is what we deduced from the problem formulation. In fact, we also in-
troduced another degree of freedom as one team member interpreted the wheel
transpositions di�erently. This later doubled the CPU time needed to �nd the
solution.

26

2.8.2 Work Description

Clearly the number of possible con�gurations to try is huge. The number of
degrees of freedom is 2× 265 = 2 · 17576 for the rotation direction, wheels and
rings, and a whopping

(
26
2

)
·
(

24
2

)
·
(

22
2

)
·
(

20
2

)
·
(

18
2

)
·
(

16
2

)
= 100391791500 for a

plugboard with six pairs of exchanges.

After inspecting the construction of the Enigma, the weakest component is
clearly the plugboard. Only 12 letters are modi�ed by the plugboard, so when
encrypting a random character there is a fair chance,

(
14/26

)2 ≈ 29%, that it
is not modi�ed by any of its two passages through the plugboard. This is a
glaring weakness, and a key feature of our solution is that we primarily search
among the 17576 wheel and ring settings.

So the main idea is to try all the possible wheel and ring settings, and to
try to locate the best one. How should this be done, when we do not even
know what the plugboard contains? The idea is as follows. For all the 17576
possible wheel and ring settings, the following is repeated: Suppose the message
has the following boring form: EEEEEE... Each E will �rst pass through the
plugboard, and it is there mapped onto one of 26 possible characters. If we knew
what character it is mapped on, we can now trace how the E is modi�ed by the
plugboard on the way in, then by the wheels, the re�ector and the wheels again.
Only the �nal pass through plugboard on the way out is unknown. Now that
we have also guessed what E is mapped on, there are 26 · 17576 possible strings
that can be produced from the supposed plaintext EEEEEE... with the given
wheels. A key idea is now that E is one of the most common letters in many
languages: English, German, French, Swedish etc. It is therefore reasonable to
assume that more than 1/26 of the letters in the actual plaintext are Es, so for
each �xed guess we determine the plugboard settings which makes the text we
get when we encrypt the string EEEEEE... coincide as well as possible with the
actual ciphertext. This can be done by solving a bipartite matching problem
(see any textbook on graph algorithms for an explanation of what this is). The
algorithm for this is fairly standard, and as it would be executed a lot of times,
some care was taken to make it e�cient. As we expect E to be fairly common,
the string EEEEEE... should behave a like the plaintext in the sense that we
expect good plugboard settings to come out of this process.

It may appear as if the approach rests upon the assumption that E is the most
common letter in the plaintext. This is really not the case; if E is rare in the
plaintext, the approach is still basically sound, but the produced plugboard may
be a bit o�.

Solving the 266 di�erent bipartite matching problems may seem like a large
computing e�ort, but the program was capable of doing this in about a CPU
day on a modern PC. (This could have been cut by another factor of two if we
had not tried two di�erent interpretations of the wheel permutations, but better

27

safe than sorry.)

So for each of the 26 · 17576 guesses, we can �nd the best plugboard. But how
can we �nd the correct guess? Notice that with the plugboard determined from
the solution to the bipartite matching problem, everything is known about the
state of the Enigma for each guess: The wheel settings, the ring settings, and the
plugboard. But this means that we can decrypt the ciphertext for each guess!
This gives 26 · 17576 candidate plaintexts, and all that remains is to choose
the best one of these � Singh's plaintext, to be precise. A human doing this
would quickly get bored to the point of falling asleep, but it is an easy task for a
computer program. The �nal design choice is how to measure the likelihood of
a candidate plaintext to be the correct one. There were several alternative ways
of doing this. As the Enigma was used, we guessed that the plaintext would
be in German. By making this assumption, frequency tables for the letters in
German text could be used. Another possible approach, slightly less e�cient but
not making any assumption about was language was being used, is as follows:
In all languages, there are some letters which are a lot more frequent than the
average 1/26 (e.g. E, T and N in English) and some that are a lot less frequent
(e.g. J and Q in English). Thus, the plaintext with the most skewed frequency
distribution is likely to be the right one. As the ciphertext was rather short, we
decided to use the �rst approach as it seemed likely to be better at discovering
the correct plaintext using the limited information available.

2.8.3 How we Found the Solution

Having decided upon the outlined attack, we tried it by creating an Enigma
simulator, encrypting English texts, and letting the program decrypt them. The
success rate was fairly high; the wheel and ring settings were always correct,
but the plugboard settings were sometimes slightly o�.

On October 7, Gunnar and Sta�an felt ready to go and let a group of work-
stations try all the possible settings, storing the 100 most likely decryptions for
manual inspection. In the morning, we were disappointed: None of the can-
didate decryptions looked even remotely like text in any language. What had
gone wrong? An intense testing and debugging pass commenced, but no bugs
were found.

The explanation came a couple of days later when Stage 7 was cracked: The
plaintext for that stage revealed that Singh had been mischievous when con-
structing this stage: The �rst two wheels should actually be exchanged! Con-
�dent that Stage 8 would succumb immediately, the three team members who
found the solution to Stage 7 pulled an all-nighter running the Enigma cracker
with the correct wheel settings. Again, nothing sensible was produced by the
program.

28

At this point we knew that we had the correct wheel setting, but our program
still failed to �nd the solution. So what could be wrong? We looked for bugs in
the program, but could not �nd any. Turning to the algorithmic approach, we
decided on changing scoring method and removed the assumption that the plain-
text was in German, instead trying the less e�cient but more general method of
assuming that the correct plaintext had the most skewed frequency distribution.
Again, the workstations were set to their work during the night. When Gunnar
came to work the next morning, he was happy to see that the setting with the
highest score produced a plaintext which looked almost like German. We soon
discovered that the plugboard settings were a bit wrong; four of the exchanged
pairs of letters were correct, but the last two were wrong. This was easily �xed
manually though, and the complete plaintext emerged along with the codeword
PLUTO:

DASXLOESUNGSWORTXISTXPLUTOXXSTUFEXNEUNXENTHAELTXEINEXMITTEIL
UNGXDIEXMITXDESXENTKODIERTXISTXXICHXHABEXDASXLINKSSTEHENDEXB
YTEXDESXSCHLUESSELSXENTDECKTXXESXISTXEINSXEINSXZEROXEINSXZER
OXZEROXEINSXEINSXEINSXXICHXPROGRAMMIERTEXDESXUNDXENTDECKTEXD
ASSXDASXWORTXDEBUGGERXWENNXESXMITXDEMXUNTENSTEHENDENXSCHLUES
SELXENTKODIERTXWIRDXALSXRESULTATXDIEXUNTENSTEHENDENXSCHRIFTZ
EICHENXHAT

The plaintext was in German, but the program still could not recognize the right
plaintext when using frequency tables for German. What was the explanation
for this? Inspecting the plaintext, it is clear that X was used as word delimiter
and XX as sequence delimiter. As X is rare in most German texts, the approach
based on frequency tables failed to recognize the correct plaintext.

2.9 Stage 9

Solution found on November 12, 1999.

2.9.1 Initial Knowledge

The solution to Stage 8 contains the following clue:

STUFE NEUN ENTHAELT EINE MITTEILUNG DIE MIT DES ENTKODIERT IST.
ICH HABE DAS LINKSSTEHENDE BYTE DES SCHLUESSELS ENTDECKT.
ES IST EINS EINS ZERO EINS ZERO ZERO EINS EINS EINS.

At �rst this seems somewhat confusing; how can the �rst byte of the key contain
nine bits? The explanation for this is as follows. A DES key is 56 bits, but it

29

is usually split into 8 blocks of 7 bits each, and after each block a parity bit is
inserted. This means that the eighth bit in the clue is the parity bit for the �rst
seven bits.

The second part of the solution to Stage 8 provides an explanation to the mys-
terious sections labelled �Schlüssel� and �Schriftzeichen� in Stage 8:

ICH PROGRAMMIERTE DES UND ENTDECKTE DASS DAS WORT DEBUGGER WENN
ES MIT DEM UNTENSTEHENDEN SCHLUESSEL ENTKODIERT WIRD ALS RESULTAT
DIE UNTENSTEHENDEN SCHRIFTZEICHEN HAT.

This made it possible for us to verify that our DES implementation worked the
same way as Singh's.

2.9.2 Work Description

DES has been around since 1976, and no signi�cant weaknesses have been dis-
covered. No algorithm signi�cantly better than trying all the 256 possible keys
have been discovered. With the 8 bits from the clue, the search space is reduced
to 248 = 281474976710656 keys. Brute force seemed to be the only option for
this stage, and we immediately started on two tasks:

• Implementing an e�cient key tester.

• Creating a distributed system where a central server distributed jobs to a
large set of client computers.

Up to now we felt that we had made progress, and in order to start this mon-
ster run as soon as possible we split the implementation between three people:
Sta�an created the server, Fredrik wrote a screensaver client, and Gunnar im-
plemented the key tester.

2.9.3 The key tester

There are several possible modes of operation for DES, it can either work as
a stream cipher or as a block cipher. We guessed that the block cipher mode,
Electronic Code Book mode, was used as it for the other modes would not
su�ce to know the key; an initial value block of 64 bits also would have to
be found. Attacking these modes of DES seemed too hard for us (and for this

30

competition), so we hoped that ECB was used, in which case �only� 48 unknown
key bits would have to be determined.

As we were about to test all the 248 keys, we had to decide upon a way to
determine if a key could be the right key. This could of course be done by
decrypting the entire message for each key, but this would mean that about
a hundred blocks would have to be decrypted with each key. A back-on-the-
envelope estimate of the number of keys we could hope to test in a second
indicated that this was out of the question. Instead, we made the reasonable
assumption that the plaintext only would contain characters from the 7-bit
ASCII character set. Only if the �rst 8-character block of the plaintext we got
for a key was solely 7-bit ASCII the next block was tested. This means that
for about 255/256 of all keys, only the �rst block would have to be decrypted;
a huge speedup compared to decrypting the entire ciphertext for each key. The
complete rules we used for each key were the following:

• The �rst block must decrypt to 7-bit ASCII.

• At least one of the second and third blocks must decrypt to 7-bit ASCII.

• At least �ve of blocks 4�12 must decrypt to 7-bit ASCII.

If a key failed one of these tests, it was discarded and the later rules not applied.
Based on the assumption that a text encrypted with DES behaves like a random
string of binary numbers, we estimated that we would get less than 10 incorrect
keys using these rules. On average, only slightly more than one block needed to
be decrypted for each key.

The actual decryption of a key was done using a technique called bit-slicing : On
a 32-bit processor, such as the Intel Pentium, 32 keys can be tried in parallel
by letting each bit position correspond to each key. The processor is viewed
as a SIMD (Single Instruction Multiple Data) parallel processor with a highly
restricted instruction set. This approach restricts the operations possible during
the decryption stage to the boolean operators AND, OR, XOR and NOT, but
as was observed a couple of years ago by the Israeli researcher Eli Biham, it
is possible to implement DES encryption and decryption e�ciently using only
these operators. By making use of this technique and optimizing the code
heavily, we could obtain very high speeds: On the fastest workstation we had
available, a DEC Alpha, more than 3 million keys/second could be tested.

2.9.4 The client/server connection

Even with the high speeds achieved, testing all the 248 keys would require several
CPU years on a typical PC or workstation. But there was no reason to test all
the keys on one single computer. so we decided to parallelize the key testing

31

task. We wrote a key server program whose job it was to keep track of what
parts of the key space had been tested. Clients could connect to the server
and ask for a job containing a set of keys to test. Each such job contained
230 = 1073741824 keys, and there were 218 = 262144 jobs in total. The server
was run on a computer always connected to the Internet; this way we would not
have to restrict ourselves to computers in a single network.

With a server eager to distribute jobs, all that remained was creating client
programs, and �nding as many computers to run these clients on as possible.
The core of the client code was the key tester described above, but on top of it
we put several layers of interface code in order to make the client able to run on
as many di�erent platforms as possible. We began by implementing the client
as a standalone program, running on Unix workstations. In order to explore
more CPU resources, a Windows screen saver version of the program was also
created. When installed on a PC, it would automatically connect to the key
server, get a portion of the key space, test these keys, request the server for a
new set of keys etc. In order for the screen saver to be able to connect to the
key server from behind �rewalls, we had to make it connect through the HTTP
port.

Having created the server and client programs, all we had to do was �nd as
much CPU power as possible, start the programs, and start waiting eagerly. To
track the progress, the server automatically updated a webpage with the current
status: The fraction of the key space covered, the number of clients reporting
jobs as �nished during the last hour etc. Last but not least, a very important
task for the server was to keep track of potentially correct keys. Any key which
passed the tests described above was used to decrypt the entire ciphertext, and
the result was then automatically sent by email to all team members.

2.9.5 How we Found the solution

Slowly but steadily, the clients worked their way through the vast key space.
After a week or so, the key server sent an email containing an alleged plain-
text! Unfortunately, this was a key which passed the tests but did not yield a
plaintext which looked reasonable. A couple of days later, another such key was
discovered. Then, three weeks after the clients were started, the key server sent
the following message:

Date: Fri, 12 Nov 1999 06:10:26 +0100 (CET)

From: DES server <des-server@multivac.fatburen.org>

Subject: Good news

This is a message from the server that coordinates the code-breaking

effort on Stage 9.

32

A client just reported that it might have found the correct DES key.

The key and the ciphertext decrypted with the candidate key follows.

Key: d3cd1694cba126fe

Message:

O!.cursed,.cursed.slave...Whip.me,.ye.devils,.From.the.possessio

n.of.this.heavenly.sight!.Blow.me.about.in.winds!.roast.me.in.su

lphur!.Wash.me.in.steep-down.gulfs.of.liquid.fire!.O.Desdemona!.

Desdemona!.dead!..Only.one.more.phase.to.go...Your.token.for.thi

s.one.is."Armstrong"...The.final.hurdle.contains.two.ciphertexts

...The.longer.one.is.encrypted.with.triple-DES.in.electronic.cod

e.book.mode...It.uses.a.128-bit.EDE.key...The.RSA.public.key.cry

ptosystem.has.been.used.to.encipher.the.triple-DES.key;.this.for

ms.the.shorter.ciphertext...The.public.exponent.is.3735928559.in

.decimal.and.the.public.modulus.is.the.following.155-digit.decim

al.integer:..10742.78829.12665.65907.17841.12799.42116.61266.392

17.94753.29458.88778.17210.35546.41509.80121.87903.38329.26235.2

!D<..t]s06.72083.50494.19964.33143.42555.83344.01855.80898.94268

....`h...Your.task.is.to.decipher.the.longer.message.and.so.disc

over.the.final.code.word...How.you.do.th.y..R(?..to.you,.but.it.

will.almost.certainly.be.much,.much.easier.to.break.the.RSA.ciph

ertext.by.factoring.the.public.modulus.than.by.any.other.approac

h...Good.luck!..

We had found the right key, yielding the codeword ARMSTRONG for this
stage. Some parts of the message looked a bit strange, though. After checking
these sections by hand, we discovered that the OCR scanner software we had
used for importing the ciphers from the book into electronic form had made a
couple of errors. After having corrected these, all the text looked good. We
were aware that scanning errors could have occurred, and we had checked the
�rst 12 blocks carefully as errors there could result in the correct plaintext being
discarded.

We were a bit lucky; only about 17% of the key space had been searched when
the correct key was found. This corresponded to about a CPU year on the
hardware we had available. The client actually running into the correct key
was one of the screensavers, running on a rather slow PC, and the job which
contained the key would have been aborted if the user of that particular PC had
not been a bit later to work than usual that day. If this would have happened,
a lot of time could have been lost: Jobs that had been assigned to a client but
not �nished were placed last in the job queue by the server. Sometimes luck
can be as important as a good approach.

33

2.10 Stage 10

Solution found on October 5, 2000.

2.10.1 Initial Knowledge

After solving Stage 9, we had all the input data that was needed to start o�
on Stage 10. During this time it was actually a little bit amusing to follow the
discussions in the mailing lists among the ones who had not seen the plaintext
of Stage 9.

Somehow, we had suspected that the �nal stage would be based on RSA encryp-
tion, and had been doing some experiments with the 155 digit number presented
as �the short message.� It obviously is not an RSA modulus since it is divisible
by small factors, and neither is any contiguous substring of the 155-digit string.

Since Torbjörn was known to be interested in factorization and large integer
computations in general, we asked him how to best factorize the 155-digit num-
ber at hand. Torbjörn said that the only method that could be used for such
a large number is the General Number Field Sieve (GNFS), but that it would
require on the order of 40 CPU years. Torbjörn had previously factored several
numbers using GNFS, but never anything close to a 155-digit number.

2.10.2 Work Description

When we realized that we needed to better understand GNFS, so turned to
Johan Håstad and asked him to teach us. It then quickly became apparent to
us that GNFS is a very advanced algorithm�it would take us a very long time
to implement it ourselves. So, of course we started to investigate the possibility
of using the same code that had been used for CWI's record factorization of
RSA-155 some months earlier. Fortunately, Nada at KTH where three of us
worked had access to CWI's GNFS implementation. Their source code comes
with the following warning:

The code is a research product which is reasonably documented, but
it is very advisable to know the (complicated) Number Field Sieve
factoring method, in order to use the code successfully.

Indeed, we were quite confused after receiving the code. We started out trying
to run the di�erent programs included in the program suite, and eventually
managed to factorize a 17-digit number after a full afternoon in Johan's o�ce.
We alternately read articles about GNFS, looked at the source code, and tried

34

to factorize larger and larger numbers for well over a month. We also ran the
�rst step of the algorithm, the polynomial �nder, during this time. The GNFS
algorithm consists of the following steps.

1. Find a pair of irreducible polynomials (f1, f2) with certain properties.

2. Select a few parameters.

3. Search for relations between the polynomials where they are both smooth.

4. Combine the relations to �nd dependencies. This involves �ltering and the
solving of a large linear system of equations. Each dependency, a2 − b2 =
(a+ b)(a− b) ≡ 0 (mod N), is a 50% chance of �nding a factorization.

5. Use the dependencies to factor the number.

The parameters in the second step should be chosen so that it is easy to �nd
many relations, but the number of relations that we need also depends on the
parameters. Since we did not have much intuition here, we tried varying the
parameters until we thought we could �nish the sieving step in reasonable time.
Actually, it seems that we did quite a poor job since we used almost twice the
computing power compared to what CWI used when breaking RSA-155.

The search for relations is carried out by sieving. This task can easily be shared
between many computers, where each one checks a di�erent range of a and b
values for possible relations. To coordinate the hundreds of computers we had
access to at Nada, we modi�ed the client/server solution used for Stage 9. Each
task took the client machines a few hours to complete. Since the siever uses over
100 megabytes of memory, we did not want the program to run on computers
that were in use, so the program stopped its computation whenever somebody
logged on to the machine.

On August 20, we had obtained 75 million relations, which we suspected might
be too few, but nonetheless we moved on to processing (��ltering�) our relations
to see how far we had progressed. We were positively surprised in that after
the �rst �ltering stage, were we threw away relations that had singleton ideals,
there were 37 million relations and 35 million ideals. This is the same as having
an linear equation system with 37 equations and 35 million unknown variables,
which implies there are 2 million dependencies between the equations. We had
enough relations!

For a successful factorization, one needs just a few dozens of dependencies,
so we could just throw away most of the excessive relations. But solving an
equation system with 35 million variables�even a very sparse one like this�
is a computationally unsurmountable task, so further �ltering was necessary.
With 2 million redundant equations, we should be able to drastically reduce the
equation system size.

35

It is important to understand that we are looking for an equation α2
1 − α2

2 =
(α1 + α2)(α1 − α2). We really only care about if the multiplicity of an ideal is
even or odd�if we can create an equation with even multiplicity for all ideals,
we have a dependency that might lead to a factorization. We can therefore
compute over GF(2).

The second �lter pass means combining sets of relations that have an ideal in
common. If we combine all relations for such an ideal, that ideal is reduced from
the equation system, and we also get fewer relations, although of higher ideal
weight. But since we had 2 million redundant equations, we could here simply
throw away those equations that became very heavy!

Filtering is an iterative process, where one tries to select parameters that reduce
the equation system as much as possible. We �nally had about 8.4 million
equations and variables and a total matrix weight of about 500,000,000.

The �ltering was performed on a dual processor Alpha DS20 with 4GB main
memory. This is an extremely powerful system, but �ltering is a daunting task
even for this machine. It took about 3 weeks before we had achieved results
that we were not able to further improve.

During the long �lter computer runs, we started to think about how long it
would take to solve the linear equation system, and if we could improve the
program. The estimated running time to solve this system on the Alpha was
150 days. Simply too much. We could not a�ord such a long computer run, and
although the computer center at UMS Medicis was very generous, we felt that
we could not occupy their most powerful machine for such a long period.

The program we used for this was optimized for running on vector computers,
which is what CWI used for their record factorization last year; it had taken
them 10 days to solve a slightly smaller equation system on a 16-processor Cray
C90. We started to rewrite this program so that it would run better on the
hardware available for us, and after a few weeks of hard work, we had a version
of the program that used both processors of the computer, and would have to
run for 37 days.

At this point, we contacted Compaq to get some help for the computation, since
we thought this was great opportunity to show how powerful the Alpha is for
scienti�c computations. Compaq generously let us use one of their quad proces-
sor ES40 systems. The total running time on this machine was 13 days, which
is almost as good as the 16-processor Cray. Thanks to the Alpha processor, we
have thus been able to show that it is possible to factorize 155-digit numbers
without using expensive vector computers.

The program produced the result on October 4, at 5:05am, yielding 11 true
dependencies. We then only had to complete the last step, which is using the
dependencies to get the factor. This involves taking square roots of huge ideals

36

in Qn[αi], and took 11 hours. Each dependency gives the desired result with
50% probability, so we started �ve simultaneous runs of the program in order
to have a reasonable probability of success.

One of the runs gave us the factorization of the RSA modulus:

107427882912665659071784112799421166126639217947532945888778172103554641509801 . . .

. . . 21879033832926235281090750672083504941996433143425558334401855808989426892463 =

= p78 × 12844205165381031491662259028977553198964984323915864368216177647043137765477

2.10.3 How we Found the Solution

In the morning on October 5, the factorization was found. Sta�an was the �rst
to discover this, and he immediately called the other team members. Everybody
dropped what they were doing and rushed to Sta�an's place to be present when
the plaintext for the �nal stage was revealed.

Having found the factorization, it was easy to decrypt the shorter message, which
had been encrypted with RSA. This gave us a 128-bit number, which we knew
would be a triple-DES key. Tense with anticipation, we fed the longer message
and the key into a DES decoder, read the output... only to discover that it was a
sequence of random characters, nothing remotely resembling a plaintext. What
could have gone wrong? We tried another DES decoder, which we had created
ourselves while working on Stage 9, but it gave the same results. We knew that
the factorization was correct, and the 128-bit key looked like a proper DES key
as it had the right parity properties. Overwhelmed by frustration, a number
of schemes were tried: Exchanging the two 64-bit blocks which the key was
composed of, reading the bits of the key in reverse order, etc. After an hour of
failed attempts, Lars suddenly screamed �Here! It is in P1!� and we all started
jumping around with joy. It turned out that the message was not encoded with
triple-DES after all: It was only protected by a single DES key, and we had had
the �le containing the right plaintext without knowing it: Lars discovered that
a temporary �le output by our DES decoder contained the plaintext:

For secrets are edged tools and must be kept from children and from
fools.

The magic word you need to quote is DRYDEN.

Congratulations, you have solved the tenth and �nal stage of the
challenge.

37

3 Epilogue

After having been at the Post O�ce and mailed a letter announcing our success
to Simon Singh, we decided to send a fax to the publisher of The Code Book,
4th Estate, as well, in order to give advance warning of the letter. We also
called Royal Mail to �nd out where the magic P.O. Box was located, and to
see if we knew anyone who could go there to post a letter that would get there
faster. We also called the airlines to see how much it would cost to send one
of us to London to send the letter o�. In the end, we decided to settle for the
combination of the letter, that was supposed to be delivered on Saturday, and
the fax.

As the rest of us were all excited, no one noticed that Torbjörn snuck into the
bathroom and called his friend Björn. Twenty minutes later, the phone rang and
it was rather interesting to watch Sta�an's facial expression change as he started
jumping and pointing to the phone. Something was happening. It was Singh on
the phone! Sta�an's expression changed for the worse as he was informed that
we were the second ones to submit the correct solution. At this point Torbjörn
started screaming �Stop it now Björn! It's enough!� It was his friend Björn
performing the practical joke...

Later that evening, the recent messages on the Cipher Challenge mailing list
were scrutinized, and some very worrying messages were discovered: One person
on the list claimed to have submitted a solution to all stages earlier the same
week! Provided this was true, it would mean terrible news for us. What if
we lost by a couple days after having worked on the challenge for a year? We
tried to calm each other down by saying that it could be a hoax, but doubt still
lingered.

On the morning of Friday October 6th, Lars was becoming even more nervous
and sent the following mail.

From: Lars Ivansson
To: Fredrik, Gunnar, Staffan, Torbjorn
Sent: Friday, October 06, 2000 07:50
Subject: Nervous

Hello!

I would like to say that I am very interested in knowing when/if
Singh contacts any of you. Please send a mail as soon as
possible. I feel like a child the day before Christmas after a
rumor about the death of Santa Claus and am basically climbing
the walls here.

38

/ Lars

Fredrik, who comes to work several hours after Lars, saw the mail and went
for co�ee and some work-related discussions. When he got back, a colleague
complained that his phone had been ringing a couple of times when he was
away.

After a couple of more minutes, the phone rang again and then Fredrik sent a
mail with the following wording (translated from Swedish):

From: Fredrik Almgren
Subject: RE: Nervous
Date: Fri, 6 Oct 2000 11:07:44 +0200

I have just talked on the phone with an English-speaking
gentleman who said he was Simon Singh. He started off the call
with a short discussion on how he was going to make me believe
that he was indeed Simon Singh. After some rambling from my
side, he said that the first part of the plaintext for Stage 10
consisted of fourteen words and that words 5 and 14 rhyme. At
that point, I felt about ready to accept that he was really who
he claimed.

We then went through all ten stages. Staffan was here yesterday
and helped me put my X-terminal in boxes. So I couldn't connect
to multivac to verify the answers. I got very nervous that he
would say that something I said was wrong. I tried to explain
that I needed to try to remember this from head.

He said that my answers were correct.

IF he is an impostor, he obviously has seen the plaintext for
Stage 10. In that case, the only thing he could gain was to get
one of the earlier code words that he was missing. It doesn't
feel very likely. Besides, he stayed on track all through the
conversation and talked about the stages in a way only an
EXTREMELY good impostor could be expected to manage. He was
however a bit off regarding my claim that there is an error in
the 3-des encoding of the message and said that he would check
it. I did NOT tell what the error was....

He said that he had received a couple of letters from people
claiming to have solved all ten stages before us.

39

He also said that we were the first ones to have solved all ten
stages!!

He asked us not to announce this yet since he wanted to contact
his British, Swedish and Amercian publishers and get back to us
on Monday for a discussion on how this is going to be presented.
I then told him that we had already sent press releases
yesterday but that we would not give the go-ahead until we had
spoken to him again.

He also gave me two phone numbers:

<snip>

He explicitly asked me not to give his number to anyone else.

Well guys, it seems like we have won!!!!!

Santa Claus will come this year too!

/Fredrik

Ps. I will disconnect my computer from the network in 55
minutes. So any further discussion must take place without me.

To this Lars replied:

From: Lars Ivansson
Sent: Friday, October 06, 2000 11:15
Subject: Re: Ping

Thanks Fredrik. You are better than Santa Claus!

/ Lars

40

