UNCLASSIFIED

RD 89690 SCREENED

By MBD Date 7 | 14 | 2015

SECRET\$4-22496

SECRET

ORTHOGONAL MOTION FOR CCM'S

Prof. S. S. Cairns NSA-34 3 February 1956

Let n be a rotor device whose graph consists of ν cycles each of length λ . An orthogonal motion for n is a rule of motion giving λ cycles each of length ν , where each cycle of length ν consists of exactly one point from each cycle of length λ .

Suppose a CCM cascade of n wheels w_1, w_2, \cdots, w_n has the property that the graph of w_1, \cdots, w_k , $k=1, 2, \cdots, n$ consists of cycles all of equal length. An orthogonal motion for such a CCM cascade is defined and applied to a device discussed by Forrest S. Goepper (see "m'-Motion for a CCM", AFSA-412B6, 6 June 1952, C 25. 221.1-503) to obtain an orthogonal motion for this device which is simpler than Goepper's m'-motion.

RECORD COPY

NSA LIGH RY S-70,061 TL (op. No. 1

S-70 061

Declassified by NSA/CSS

Deputy Associate Director for Policy and Records

On 20150512 by 59

SECRET

SECRET

ORTHOGONAL MOTION FOR CCM's

1. Introduction

Let M be a rotor device whose graph consists of ν cycles C_1, \dots, C_{ν} each of length λ for some positive integers ν , λ . An <u>orthogonal motion</u> for M is a rule of motion giving λ cycles $\Gamma_1, \dots, \Gamma_{\lambda}$ each of length ν where Γ_i and C_j have exactly one point of intersection (i = 1, ..., ν ; j = 1, ..., λ). An example is the m*-motion defined by Forrest S. Goepper, "M*-Motion for a CCM," (AFSA-412B6, 6 June 1952, C 25.221.1-503).

In the present report, an orthogonal motion is defined for a CCM cascade of N wheels w_1, \ldots, w_N of respective lengths m_1, \ldots, m_N where (1) w_1 is fast (2) w_i has a notch pattern controlling w_{i+1} in the usual way (i = 1, ..., N-1) and (3) the graph of (w_1, \ldots, w_k) consists of cycles all of equal length λ_k (k=1, ..., N). An orthogonal motion simpler than Goepper's m'-motion is obtained for the machine he discussed.

Let C^{k-1} be any cycle of (w_1, \ldots, w_{k-1}) and let $u(C^{k-1})$ be the number of points on C^{k-1} where a notch of w_{k-1} is active. Then

(1.1)
$$v_k = d(m_k, u(C^{k-1}))$$
 (d means g.c.d.)

SECRET

Condition (3) is equivalent to the requirement that ν_k be the same for every C^{k-1} . It is sufficient but not necessary that we have equal cycles for each k in order to have equal cycles at the final stage. We are assuming equality for each k in order to simplify our discussion.

2. v-motion

Our orthogonal motion will be compounded of individual wheel motions which will be called \underline{v} -motions. Let \underline{w} be a rotor of any length \underline{m} , with its points numbered $0, 1, \ldots, \underline{m}$ -lin cyclic order, and let \underline{v} be any factor of \underline{m} .

By the <u>v-motion</u> for w we will mean a motion such that, if x-1 is in active position, then the next point to come into active position will be x, unless x is a multiple of v. In the latter case, x-v will next come into active position. If, for example m=12, v=4 and x=6, the motion brings points $(6, 7, 4, 5, 6, 7, 4, 5, \cdots)$ successively into active position. If x=9, we would have $(9, 10, 11, 8, 9, 10, 11, 8, \cdots)$ and so on.

If m is even, <u>2-motion</u> is defined and is a flipping back and forth between 2k and 2k+1 for any $k \in 0, 1, \dots, \frac{m}{2} - 1$.

In accordance with the above definition, $\underline{m-motion}$ is the usual motion of a rotor in which the x-1 is always succeeded by

SECRET

x (x=1, ..., m-1) and m-1 by 0. The "movement" of a stationary wheel satisfies the definition of <u>1-motion</u>.

The definition of ν -motion does not restrict the time interval between one step and the next, but merely specifies what the next step will be when it occurs.

3. O-motion

We refer to our orthogonal motion as O-motion, the O not being a zero but the initial letter of orthogonal. We proceed to define O-motion.

Given the N-wheel CCM described above, let C^{k-1} be any cycle of the first (k-1) wheels (k>1). Then (C^{k-1}, w_k) , regarded as a 2-wheel device, gives rise to

(3.1)
$$v_k = \frac{\lambda_{k-1} m_k}{\lambda_k}$$

cycles of the first k wheels.

(A) With the v's thus defined, there are

$$(3.2) v_{12\cdots k} = v_1 \cdot v_2 \cdots v_k$$

cycles, each of length λ_k , in the graph of the k-wheel device (w_1, \ldots, w_k) . In particular,

(3.3)
$$\begin{cases} v_1 = 1 & \text{(hence } \lambda_1 = m_1) \\ v_{12\cdots k} = v_2 v_3 \cdots v_k \end{cases}$$

SECRET

The statements made without proof in this report are simple consequences of known results in cycle theory. Some of the most relevant results are stated in the writer's <u>Exhaustive motion for a CCM</u> (NSA-34, 11 January 1956, S-70 038).

O-motion is a cascade of ν -motions where w_k has ν_k -motion and takes one step each time w_{k-1} steps onto a multiple of ν_{k-1} . Since ν_1 =1, the statement that w_1 has ν_1 -motion means that it is, in effect, stationary or that it takes a trivial "step," with the same arbitrary but fixed point reappearing each unit of time. This means that w_2 has $\underline{\text{fast}}\ \nu_2$ -motion, stepping each unit of time. Then w_3 has ν_3 -motion, stepping each ν_{12} th unit of time; w_4 has ν_4 -motion, stepping each ν_{123} th unit of time, and so on.

Theorem. O-motion is an orthogonal motion.

We establish this theorem by describing the O-motion cycles and the CCM-motion cycles in such a way as to reveal that they are related in the required manner.

(B) The CCM-cycle through $(0, x_2, \dots, x_N)$ will be denoted by $C_{x_2x_3\cdots x_N}$ as the x^s range independently through $x_j = 0, 1, \dots, \nu_{j-1}$ $(j = 2, \dots, N)$. These cycles, which number $(3.4) \qquad \nu = \nu_2 \nu_3 \cdots \nu_N$

are of length

SECRET

(3.5)
$$\lambda = \frac{m_1 m_2 \cdots m_N}{\nu}$$

and constitute the entire CCM cyclic structure of the device. [See Section 5 below for further details.]

Consider first the cycle $\Gamma_{00\cdots 0}$. By definition, its points are the ν points $(0, x_2, \ldots, x_N)$ $(x_j = 0, 1, \cdots, \nu_{j-1}; j = 2, \ldots, N)$. To be precise, these points occur on $\Gamma_{0\cdots 0}$ in lexicographic order with respect to their reversed coordinates $(x_N, x_{N-1}, \cdots, x_2)$. For example, if N = 3 and $\nu_2 = 4$, $\nu_3 = 3$ there would be twelve points on $\Gamma_{0\cdots 0}$ in the order

$$(0, 0, 0) \rightarrow (0, 1, 0)$$
 $(0, 2, 0)$ $(0, 3, 0)$ $(0, 0, 1)$ $(0, 1, 1)$ $(0, 2, 1)$ $(0, 3, 1)$ $(0, 0, 2)$ $(0, 1, 2)$ $(0, 2, 2)$ $(0, 3, 2)$ $(0, 0, 0)$

In general, the O-cycle $\Gamma_{j_1\cdots j_N}$ passes through the points $(j_1,j_2\nu_2+x_2,j_3\nu_3+x_3,\cdots,j_N\nu_N+x_N)$ in the same order that $\Gamma_{00\cdots 0}$ passes through the points $(0,x_2,\ldots,x_N)$. The number of cycles Γ is

(3.6)
$$\left(\frac{m_1}{\nu_1}\right)\left(\frac{m_2}{\nu_2}\right) \cdots \left(\frac{m_n}{\nu_n}\right) = \lambda$$

SECRET

and each is of length ν as required. Each setting of the machine is on one and only one $\Gamma_{j_1\cdots j_N}$.

(D) No two of the ν points on $\Gamma_{j_1\cdots j_N}$ are on the same $\frac{\text{cycle }C_{x_2\cdots x_N}}{\sum_{i_1\cdots i_N}} \cdot \frac{\text{Hence each }\Gamma_{j_1\cdots j_N}}{\sum_{i_1\cdots i_N}} \cdot \frac{\text{intersects each }C_{i_1\cdots i_N}}{\sum_{i_1\cdots i_N}} \cdot \frac{\sum_{i_1\cdots i_N}}{\sum_{i_1\cdots i_N}} \cdot \frac{\text{intersects each }C_{i_1\cdots i_N}}{\sum_{i_1\cdots i_N}} \cdot \frac{\sum_{i_1\cdots i_N}}{\sum_{i_1\cdots i_N}} \cdot$

This completes a set of statements, easily verifiable in terms of known cycle theory, from which the above theorem follows.

The exhaustive motion defined in "Exhaustive Motion for a CCM" reduces, for the present case, to running around C_{00} ..., stepping one point along Γ_{00} ..., running around C_{010} ... o stepping along Γ_{00} ... o and so on.

4. O-motion for a special case

The device discussed by Goepper (loc. cit.) consists of five 26-point rotors R_i (i=1,2,3,4,5), where (1) R_3 is fast and has a notch pattern on each side (2) R_3 , R_4 , R_5 form a CCM cascade using one of R_3 's notch patterns (3) R_3 , R_2 , R_1 form a CCM cascade using the other of R_3 's notch patterns. Restrictions on the notch patterns are such that each of the cascades R_3 , R_4 , R_5 and R_3 , R_2 , R_1 has four cycles, each of length $\lambda = 2 \cdot 13^3$. In particular, (R_3, R_2) produces two cycles each of length $2 \cdot 13^2$. Each of these, with R_1 , produces two cycles of length λ .

SECRET

(A) Applying the work of the previous section to the cascade R_3 , R_2 , R_1 alone, O-motion consists in a cascade of ν -motions, with R_3 stationary, R_2 undergoing 2-motion and R_1 undergoing 2-motion. In other words, R_2 flips back and forth between positions 2j and 2j+1, stepping once per unit time; while R_1 flips back and forth between 2k and 2k+1, stepping each alternate unit of time.

If (x, 2j, 2k) are position numbers on (R_3, R_2, R_1) then O-motion takes us around the four-point cycle Γ_{xjk} : (x, 2j, 2k) (x, 2j+1, 2k) (x, 2j, 2k+1) (x, 2j+1, 2k+1). There is one of these four points on each of the cycles (C_1, C_2, C_3, C_4) , though not generally in the order named.

(B) As x ranges through $(0, 1, \dots, 25)$ and $(j=0, 1, \dots, 12; k=0, 1, \dots, 12)$, Γ_{xjk} ranges through the $2 \cdot 13^3$ cycles of the O-motion structure. Each is of length 4 and meets each of the CCM cycles C_i (i=1, 2, 3, 4), which are of length $2 \cdot 13^3$, in a single point.

Let (x, y, z) be any point on one of the cycles C_i and let (s, t) be any setting of the two rotors (R_4, R_5) . The CCM cycle of (R_3, R_2, R_1) through (x, y, z) is of exactly the same length, $2 \cdot 13^3$, as the CCM cycle of (R_3, R_4, R_5) .

SECRET

Hence the setting (x, y, z, s, t) will recur in $2 \cdot 13^3$ units of time.

- (C) The cyclic structure of the entire device consists of $4 \cdot 26^2 = 2^4 \cdot 13^2$ cycles C_{ist} (i = 1, 2, 3, 4; s = 0, 1, ..., 25; t = 0, 1, ..., 25) each of length $2 \cdot 13^3$.
- (D) It is now easy to verify that an O-motion is afforded by a cascade of v-motions for R_3 , R_2 , R_1 , R_4 , R_5 in the order named; where (R_3, R_2, R_1) move as described in (A) while R_4 and R_5 go through 26-motion, which is simple rotation, with R_4 taking a step only every fourth unit of time (namely, when R_2 and R_1 are both stepping onto even-numbered points) and R_5 steps every $104^{\rm th}$ time, when R_4 is stepping into its $O^{\rm th}$ position. The O-motion cycles can be designated as in the case of R_3 , R_2 , R_1 alone, by $\Gamma_{\rm xjk}$ (x = 0, 1, ..., 25; j = 0, 1, ..., 12; k = 0, 1, ..., 12). Each O-motion cycle for the entire device is of length $2^4 \cdot 13^2$ and there are $2 \cdot 13^3$ of them. There are $2^4 \cdot 13^2$ cycles $C_{\rm ist}$ (i = 1, 2, 3, 4; s = 0, 1, ..., 25; t = 0, 1, ..., 25) each of length $2 \cdot 13^3$. Each two cycles $\Gamma_{\rm xjk}$ and $C_{\rm ist}$ have a single common point.

5. Comment on orthogonal motions

It would be satisfying if our orthogonal motion had the property that every cycle Γ intersected all the cycles C in

the same order and conversely. We could then represent the Γ 's and C's as a simple reticulation of the torus by transverse and meridial circles. Unfortunately, O-motion lacks this property and would have to be complicated in a fairly ghastly manner to achieve it.

To gain further insight into the question just formulated, first consider the following comments.

- (A) The proof that the points on Γ_{00} are on distinct cycles $C_{x_2\cdots x_N}$ is most simply given by a recurrent argument, depending on the facts that: (1) If a two-wheel device (w_1, w_2) has ν cycles, then the points (0, 0), (0, 1), \cdots , $(0, \nu$ -1) are all on different cycles. (2) An N-wheel device can be analyzed into a sequence of two-wheel devices.
- (B) The same argument carries over to prove that the points on $\Gamma_{j_1\cdots j_N}$ are on distinct cycles $C_{x_2\cdots x_N}$.
- (C) There are exactly enough points on $\Gamma_{j_1\cdots j_N}$ to account for all the cycles $\ ^{C}x_2\cdots x_N$.
- (D) All the cycles $\Gamma_{j_1\cdots j_N}$ account for all settings of the machine.

These four statements constitute the heart of our argument.

SECRET

To appreciate the complications of going further, we will formulate the t^{th} point on cycle $C_{x_2x_3\cdots x_N}$ in the special case where, for each $k=2,3,\cdots,N$, the number of notches on w_{k-1} is a multiple of v_k .

For the position numbers 0, 1, \cdots , m_{k-1} on w_{k-1} we define a function e_k as follows:

$$e_{k}(0) = 0$$

 $e_k(x)$ = the number of notches at points (0, 1, ..., x-1), $e_k(x)$ being reduced mod v_k to one of the numbers (0, 1, ..., v_k -1).

Let $(0, x_2, x_3, \dots, x_N)$ be the initial point, at time t = 0, on $C_{x_2 \dots x_N}$, and let $(t, x_2^*(t), x_3^*(t), \dots, x_N^*(t))$ be the point at time t on $C_{x_2 \dots x_N}$. Then

$$x_2^*(t) = x_2 + e_2(t)$$

$$x_3^*(t) = x_3 + e_3(x_2^*(t)) - e_3(x_3)$$

 $x_{k}^{*}(t) = x_{k} + e_{k}(x_{k-1}^{*}(t)) - e_{k}(x_{k})$

$$(k = 3, 4, \dots, N)$$
.

The functions x_k^* are to be reduced mod m_k to one of the numbers 0, 1, ..., m_k-1 .

SECRET

It is difficult to see which of the curves $\Gamma_{j_1\cdots j_N}$ contains the t^{th} point on $C_{\mathbf{x}_2\cdots \mathbf{x}_N}$. It would be difficult to define an orthogonal motion for which one of the cycles passes through all the t^{th} points. Finally, it would be difficult to revise the cyclic order of the point on the cycles $\Gamma_{j_1\cdots j_N}$ to agree with any specified numbering of the cycles $C_{\mathbf{x}_2\cdots \mathbf{x}_N}$.