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Let n be a rotor device whose graph consists of v cycles 
each of length X. An orthogonal motion for n is a rule of motion 
giving X cycles each of length v , where each cycle of length v 
consists of exactly one point from each cycle of length X .

Suppose a CCM cascade of n wheels w., w^, • • • » wn has the 
property that the graph of Wp •••> w^ , k - I, 2, • • • , n consists 
of cycles all of equal length. An orthogonal motion for such a 
CCM cascade is defined and applied to a device discussed by 
Forrest S. Goepper (see "m’-Motion for a CCM”, AFSA-412B6, 
6 June 1952, C 25. 221.1-503) to obtain an orthogonal motion for 
this device which is simpler than Goepper’s m’-motion.
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ORTHOGONAL MOTION FOR COM’s

1. Introduction

Let M be a rotor device -whose graph consists of v cycles 

Cp • • • , Cv each of length X for some positive integers v, X. 

An orthogonal motion for M is a rule of motion giving X. cycles 

I'p •••» rK each of length v where ip and Cj have exactly one 

point of intersection (i = 1, . . . , v ; j = 1, . . . , X) . An example is 

the m’-motion defined by Forrest S. Goepper, " M’-Motion for a 

CCM," (AFSA-412B6, 6 June 1952, C 25. 221.1-503).

In the present report, an orthogonal motion is defined for a 

CCM cascade of N wheels Wj, ...» w^ of respective lengths 

m-p .... mN where (1) w^ is fast (2) w^ has a notch pattern 

controlling w-+1 in the usual way (i = 1, ..., N-l) and (3) the 

graph of (wp .... w^) consists of cycles all of equal length X^ 

(k = 1, . . . , N) . An orthogonal motion simpler than Goepper’s 

m’-motion is obtained for the machine he discussed.

Let 1 be any cycle of (wp ...» p and let u(dC”^) 

be the number of points on C where a notch of w^. j is 

active. Then

(1.1) Vk = d(mk’ u<ck”19 (d means g. c. d. )



Condition (3) is equivalent to the requirement that be the 

k-1same for every C . It is sufficient but not necessary that we 

have equal cycles for each k in order to have equal cycles at 

the final stage. We are assuming equality for each k in order 

to simplify our discussion.

2. v-motion

Our orthogonal motion will be compounded of individual 

wheel motions which will be called v-motions. Let w be a 

rotor of any length m , with its points numbered 0,1, ...» m-1 

in cyclic order, and let v be any factor of m .

By the v-motion for w we will mean a motion such that, 

if x-1 is in active position, then the next point to come into 

active position will be x , unless x is a multiple of v . In the 

latter case, x-v will next come into active position. If, for 

example m = 12, v = 4 and x = 6 , the motion brings points 

(6, 7, 4, 5, 6, 7, 4, 5, • • • ) successively into active position. If 

x= 9 » we would have (9, 10, 11, 8, 9, 10, 11, 8, • • • ) and so on.

If m is even, 2-motion is defined and is a flipping back 

and forth between 2k and 2k + 1 for any k € 0, 1, • • • , - 1.

In accordance with the above definition, m-motion is the 

usual motion of a rotor in which the x-1 is always succeeded by
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x (x = 1, . . . , m - 1) and m - 1 by 0 . The " movement” of a station­

ary wheel satisfies the definition of 1-motion.

The definition of v-motion does not restrict the time interval 

between one step and the next, but merely specifies what the next 

step will be when it occurs.

3. O-motion

We refer to our orthogonal motion as O-motion, the O not 

being a zero but the initial letter of orthogonal. We proceed to 

define O-motion.

Given the N-wheel COM described above, let be any
vi

cycle of the first (k - 1) wheels (k>l). Then (C , w^) , regarded 

as a 2-wheel device, gives rise to

cycles of the first k wheels.

(A) With tKe v*s thus defined, there are

|3-2> V12--.k = V VZ'" Vk

cycles, each of length , in the graph of the k-wheel device

(Wj...........W1J‘ *n part^cu^ar«

C VY~ 1 (hence = mp

(3.3) <
I V12- • -k = V2 v3 ‘ ’ Vk
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The statements made without proof in this report are simple 

consequences of known results in cycle theory. Some of the most 

relevant results are stated in the writer’s Exhaustive motion for 

a CCM (NSA-34, 11 January 1956, S-70 038).

O-motion is a cascade of v-motions where w^ has v^-motion 

and takes one step each time w^.  j steps onto a multiple of . 

Since = 1 , the statement that w^ has v^-motion means that it is, 

in effect, stationary or that it takes a trivial " step," with the 

same arbitrary but fixed point reappearing each unit of time. This 

means that w^ has fast --motion, stepping each unit of time. Then 

w, has -motion, stepping each unit of time; w^ has

v^-motion, stepping each unit of time, and so on.

Theorem. O-motion is an orthogonal motion.

We establish this theorem by describing the O-motion cycles 

and the CCM-motion cycles in such a way as to reveal that they 

are related in the required manner.

(B) The CCM-cycle through (0, x^, . . . » x^) will 

be denoted by C as the x’s range independently through
X2X3* ”XN

Xj = 0, 1, . . . , Vj -1 (j = 2, . . . , N) . These cycles, which number

(3.4) v = v2 v3 ’ ’ ’ VN

are of length
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(3.5) X

and constitute the entire CCM cyclic structure of the device. [See

Section 5 below for further details. ]

(C) The O-motion cycle which passes through

(i = l, ...» N) .

^1V1* ^2V2* ^3V3’ " * " ’ 3nVN^ ~ ^1 ’ ^2 V2’ j3V3’ * ’ ‘ ’ JnVN^

denoted by T. . . as the jgs range independently through
J1J2 * * * JN

m.
ji = °,l, -1

i

m, 1 2 N
v

Consider first the cycle T^. . .o • definition, its points

are the v points (0, x^» • • (xj ~ 0- 1> * * ' - J - » N).

To be precise, these points occur on ro in lexicographic

order with respect to their reversed coordinates <XN’ XN-1’ ' ' x2^

For example, if N = 3 and - 4, - 3 there would be twelve

points on F in the orderr o • • • o

(0, 0, 0) -* (0, 1, 0)
(0, 0, 1) (0, 1, 1)
(0, 0, 2) (0, 1, 2)

(0, 2, 0)
(0, 2, 1)
(0, 2, 2)

(0, 3, 0)
(0, 3, 1)
(0, 3, 2) (0, 0, 0)

In general, the O-cycle F. . passes through the points 
J1”’JN

(jp jzv2 + x2’ J3V3 + x3’ ' ' JnVN + xN^ *n t^ie same order that

roo o passes through the points (0, x?,

of cycles F is 

(3.6)

Xj^). The number
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and each is of length v as required. Each setting of the machine 

is on one and only one T. .
Jr ’ ,JN

(D) No two of the v points on T. .... are on the same 
J1 JN 

cycle C . Hence each T. . intersects each C
2 N J1 JN 2 N

in a single point. [See Section 5(B) below. ]

This completes a set of statements,, easily verifiable in terms 

of known cycle theory, from which the above theorem follows.

The exhaustive motion defined in "Exhaustive Motion for a 

CCM" reduces, for the present case, to running around . o» 

stepping one point along Foo Q , running around Cq^ q 

stepping along Foo and so on.

4. O-motion for a special case

The device discussed by Goepper (loc. cit.) consists of 

five 26-point rotors IF (i = 1, 2, 3, 4, 5), where (1) Ris fast 

and has a notch pattern on each side (2) , R^ , R^ form a CCM

cascade using one of R^'s notch patterns (3) R^, R^, R^ form a 

CCM cascade using the other of R^’s notch patterns. Restrictions 

on the notch patterns are such that each of the cascades R^, R^, R^ 

and R^, R^, Rj has four cycles, each of length X = 2 • 13^. In 

2 particular, (R^, R^) produces two cycles each of length 2 - 13 . 

Each of these, with Rp produces two cycles of length X.
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(A) Applying the work of the previous section to the 

cascade R^, R->, Rj alone, O-motion consists in a cascade of 

v-motions, with R^ stationary, R, undergoing 2-motion and 

Rj undergoing 2-motion. In other words, R^ flips back and 

forth between positions 2j and 2j + 1, stepping once per unit 

time; while R^ flips back and forth between 2k and 2k +1, 

stepping each alternate unit of time.

If (x, 2j, 2k) are position numbers on (Rp R^» Rj) then 

O-motion takes us around the four-point cycle 

rxjk ’ 2j» 2k) (x, 2j+l, 2k) (x, 2j,2k + l) (x, 2j + 1, 2k + l).

There is one of these four points on each of the cycles 

(Cp C^, C3, C^) , though not generally in the order named.

(B) As x ranges through iO, 1, • » • „ 25) and

(i = 0» 1, ♦ «• . 12; k = 0, 1, - - - „ 12) » ranges through the
3

2 - 13 cycles of the O-motion structure. Each is of length 4 

and meets each of the COM cycles (i = 1, 2» 3, 4). which are
3

of length 2 - 13 »in a single point.

Let (x, y, 2) be any point on one of the cycles Cb and 

let (s, t) be any setting of the two rotors (R^, R.) . The 

COM cycle of (R^, R,, R^) through (x, y, 2) is of exactly 
3

the same length, 2 - 13 , as the COM cycle of (R^, R^, R^.) .
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Hence the setting (x, y, z, s, t) will recur in 2 • 13J units of 

time.

(C) The cyclic structure of the entire device consists of

4 - 26^ - 2^ - 13^ cycles C.■ . (i - 1, 2, 3, 4; s = 08 18 » ■ » g 25;

t - 0, 1, ° , 25) each of length 2 - 13^ .

(D) It is now easy to verify that an O-motion is afforded

by a cascade of v-motions for R , R^, Rp R^, R^ in the order 

named; where (R^, R^, R^) move as described in (A) while R^ 

and Rg go through 26-motion, which is simple rotation, with 

R^ taking a step only every fourth unit of time (namely, when 

R^ and R^ are both stepping onto even-numbered points) and 

Rc- steps every 104t^1 time, when R^ is stepping into its 

position. The O-motion cycles can be designated as in the case

of R^, R^, Rj alone, by (x= 0, 1, • • • , 25; j = 0, 1, • • • ,12;

k= 0, 1, • • •, 12) . Each O-motion cycle for the entire device is 

of length 2^ -13^ and there are 2 • 13^ of them. There are

24 - 132 cycles (i = 1, 2, 3, 4; s = 0, 1, • • • , 25; t = 0, 1, • • • , 25)

. . have a ist 
single common point.

3each of length 2 * 13 . Each two cycles T ., and C XJK

5. Comment on orthogonal motions

It would be satisfying if our orthogonal motion had the 

property that every cycle T intersected all the cycles C in
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the same order and conversely. We could then represent the I ’s 

and C’s as a simple reticulation of the torus by transverse and 

meridial circles. Unfortunately, O-motion lacks this property 

and would have to be complicated in a fairly ghastly manner to 

achieve it.

To gain further insight into the question just formulated, first 

consider the following comments.

(A) The proof that the points on Tare on 

distinct cycles C is most simply given by a recurrent
X2" ' *XN

argument, depending on the facts that: (1) If a two-wheel device 

(wp w^) has v cycles, then the points (0, 0), (0, 1), , (0, v-1)

are all on different cycles. (2) An N-wheel device can be analyzed 

into a sequence of two-wheel devices.

(B) The same argument carries over to prove that the

points on I . . are on distinct cycles C .
Jr • 'JN X2"-XN

(C) There are exactly enough points on T. . to
Jr' ’ jn

account for all the cycles C
X2’ ' ’ XN

(D) All the cycles T. . account for all settings of
Jf' ’Jn

the machine.

These four statements constitute the heart of our argument.
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To appreciate the complications of going further, we will

formulate the tth point on cycle 

case where, for each k = 2, 3, ••

in the special
X2X3 ’ ’ ‘ XN

• , N, the number of notches on

w^. J is a multiple of .

For the position numbers 0, 1, 

define a function e^ as follows:

on w, i we k-1

ek(0) = 0

e^fx) - the number of notches at points (0,1, • . ■ , x - 1), 

ek(x) being reduced mod to one of the numbers 

(0, 1, •••» vk-l).

Let (0, x_,, x^, • • • , x^) be the initial point, at time t= 0, 

on , and let (t, x* (t) , x* (t) , • • • , x^ (t)) be the point

at time t on C . Then
X2 * * ' XN

x2 = x2 + e2

x* (t) = x3 + e3 (x* (t)) - e3 (x3)

X£(t) = xk + ek(x._1(t))-ek(xk) (k = 3, 4, • •• , N) .

The functions are to be reduced mod m, to one of the numbers K K
0,1, * * ’ , m^-1 ,

-10-
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It is difficult to see which of the curves F. . contains
J1 ’ * ’ JN

the t“1 point on C .It would be difficult to define an
x2* ' ’ XN

orthogonal motion for which one of the cycles passes through all

the t^^ points. Finally, it would be difficult to revise the cyclic

order of the point on the cycles F. • to agree with any 
Jl’ * -JN

specified numbering of the cycles C
x2‘ XN
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